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Warning!

Dear reader, in this short talk I would like to explain why I like number theory. We will
concentrate our attention on a theorem of Fermat whose various proofs fantastically illustrate
diversity of mathematical methods that come into play when one deals with number theory.
None of the result and arguments here will be deep, but (almost) every one of them has the
goal of introducing some interesting method, notion or even entire subarea of number theory.
If you have any questions or suggestions, don’t hesitate to contact me. I hope you will enjoy
this!
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1 What is this talk about?

In his letter written in 1640 to Mersenne1, Fermat2 stated the following result.

Theorem 1.1 (Fermat’s theorem on sum of two squares). Every prime number p of the form 4k`1
can be expressed as sum of two squares, that is there are integers x and y with p “ x2 ` y2.

Truth to be told, Albert Girard3 was probably the first who conjectured this result, but here
once again history gives advantage to a more famous mathematician. Anyhow, like many other of
his ”results”, Fermat didn’t really provide any proof of his claim. The first proof of this theorem

∗banesobot@gmail.com, Humboldt University
1Marin Mersenne(1588–1648), a French mathematician
2Pierre de Fermat(1607–1665), a French lawyer and mathematician
3Albert Girard(1595–1632), a French mathematician
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was provided by Euler4 in 1749. In the following 300 years many new interesting proof were found
and we will discuss some of them in the sections to come.

First, we will see Euler’s original proof which uses famous method of infinite descent (probably
the second most boring proof). After this, we will see two (combinatorial) proofs which are based
on the so-called Pigeon-hole principle. Although these two are essentially the same, they can be
viewed from different perspectives and open us different doors. In between them we will throw
in Dedekind’s5 (algebraic) proof which exploit the machinery of Gaussian integers. Next comes a
(geometric) proof via Minkowski’s6 theorem which is (in my modest opinion) probably the most
beautiful one. It is followed by Lagrange’s7 (algebraic) proof (later simplified by Gauss8) which
makes use of quadratic forms. While closing to the end, we have another two (combinatorial) proofs
(via partitions by Christopher and ”one sentence” by Zagier9) which use the same idea, but again
viewed in different light. Finally, we have an exhaustive (analytic?) proof which uses formal series.

Before closing this section, let us mention several results and conjectures which are closely related
to Fermat’s theorem. First, we have a complete characterization of natural numbers which can be
expressed as sum of two squares.

Theorem 1.2 (Sum of two squares theorem). Let n be a natural number with factorization to

primes n “ 2αpβ1

1 ...pβrr q
γ1
1 ...qγss , where pi’s and qj’s are primes of the form 4k ` 1 and 4k ` 3

respectively. Then n can be expressed as some of two squares iff all γ1, ..., γs are even.

In the following section we will see a proof of this result using Fermat’s theorem on some of two
squares. Sum of two squares theorem has its two cousins which deal with sum of three squares (due
to Legendre10) and sum of four squares (due to Lagrange).

Theorem 1.3 (Legendre’s theorem on some of three squares). A natural number can be expressed
as sum of three squares iff it is not of the form 4ap8k ` 7q for some integers a ě 0 and k ě 0.

Theorem 1.4 (Lagrange’s theorem on some of four squares). Every natural number can be expressed
as sum of four squares.

When you think about it for a second, isn’t it very paranormal that this story stops at four
squares? This inspires us to make the following definition.

Definition 1.5. We denote with gpkq the smallest natural number n such that every natural number
can be written as sum of n numbers which are all kth powers of some natural numbers.

For example, we obviously have that gp1q “ 1 while Lagrange’s theorem (together with exami-
nation that 7 is not a sum of three squares) provides us gp2q “ 4. Observe that it is far from obvious
that gpkq is finite in general. The problem of calculating gpkq is known as Waring’s11 problem.

With a lot of afford, it can be proven that gp3q “ 9, gp4q “ 19,... In fact, a work of several
people provides a complete description of all values of gpkq which are all finite. It is actually known

that gpkq “ 2k ` t 3k

2k
u ´ 2 for all but finitely many k P N. The only potentially problematic k P N

are those satisfying a very mysterious relation

2k
"

3k

2k

*

`

Z

3k

2k

^

ą 2k (1)

and no number with this property is known! Therefore, providing a proof that no natural number
satisfies (1) would put an end to the Waring’s problem (but I am guessing this is not completely
straightforward).

There is also a very important geometric interpretation of the Sum of two squares theorem.
Namely, this theorem characterizes exactly does (closed) circles in R2 whose equation is of the
form x2 ` y2 ď n2 (for some n P N) and whose boundary contains at least one point with integer
coordinates.

4Leonhard Euler(1707–1783), a Swiss mathematician, physicist, astronomer, geographer, logician, engineer and
God knows what

5Richard Dedekind(1831–1916), a German mathematician
6Hermann Minkowski(1864–1909), a German mathematician
7Joseph-Louis Lagrange(1736–1813), an Italian-French mathematician and astronomer
8Carl Friedrich Gauss(1777-1855), a German mathematician
9Don Zagier(1951–), American-German mathematician

10Adrien Marie Legendre(1752–1833), a French mathematician
11Edward Waring(1736–1798), a British mathematician
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Open Problem 1.6 (Gauss’s circle problem). Given a real number r ě 0, how many points with
integer coordinates are there in the circle x2 ` y2 ď r2?

Although this problem has completely elementary and quite simple formulation, it is considered
one of the hardest problems in number theory. It is not too hard to obtain some boundary of this
number.

Exercise 1.7. Prove that the number of points with integer coordinates in the circle x2 ` y2 ď r2

equals to r2π `Oprq.

It is conjectured that the error is actually of order Opr1{2`εq, but currently it is only known that
this error has order Opr0.629...q.

2 Preliminaries

In this short section we will prove several elementary facts which we will need in later. Recall that
for any prime number p we know that Z{pZ is a (finite) field.

Theorem 2.1. If F is a finite field, then its multiplicative group is cyclic.

Proof. Suppose on the contrary and let a P F be an element of maximal multiplicative order. Since
a is not a generator of group F˚ “ F zt0u its order is equal to some m ă |F˚|. We claim that for
every b P F˚ we have bm “ 1, so let n be order of b. Suppose on the contrary, that we can find some
prime number q such that n “ qαk and m “ qβl, where q - k, q - l and α ą β. In this case element

aq
β

has order l and bk has order qα. Therefore, element aq
β

bk has order lcmpl, qαq “ qαl ą qβl “ m.
This is a contradiction with the choice of a, thus we must have bm “ 1. Now, every nonzero element
of F is a solution of the equation xm “ 1. However, the polynomial xm ´ 1 can have at most m
zeros, so we obtain a contradiction. Thus there must be an element of order |F˚|.

Definition 2.2. Let p be a prime. An integer g we call a primitive root modulo p if its residue
modulo p is a generator of the multiplicative group of field Z{pZ.

In other words, primitive roots modulo p are exactly integers g P Z such that all numbers
g, g2, ..., gp´1 have distinct residues modulo p. The following simply corollary

Corollary 2.3. If p is a prime number of the form 4k ` 1, then the congruence x2 ” ´1pmod pq
has a solution.

Proof. Pick some primitive root g modulo p. By Fermat’s little theorem, we have that p|gp´1´ 1 “
pgpp´1q{2 ´ 1qpgpp´1q{2 ` 1q and since p - gpp´1q{2 ´ 1 (because g is a primitive root modulo p), we
conclude that p|gpp´1q{2 ` 1 thus x :“ gpp´1q{4 is the wanted solution.

Since there is no some special name for numbers which are representable as sum of two squares,
we will be imaginative here.

Definition 2.4. Natural number n P N we call a BMS number if it can be expressed as a sum of
two squares, i.e. if there are two integers x, y P Z with n “ x2 ` y2.

Lemma 2.5. If m and n are BMS numbers, then so is their product.

Proof. This is a simple consequence of the identity pa2 ` b2qpc2 ` d2q “ pac` bdq2 ` pad´ bcq2.

As we promised in the introduction, let us now prove the Sum of two squares theorem with the
help of Fermat’s theorem on sum of two squares.

Exercise 2.6. Prove that prime numbers of the form 4k ` 3 are not BMS numbers.

Lemma 2.7. If p is a prime of the form 4k ` 3 and p|x2 ` y2, then p|x and p|y.

Proof. Suppose on the contrary and let g be a primitive root modulo p. Then we can find unique
i, j P t1, 2, ..., p´ 1u such that x ” gipmod pq and y ” gjpmod pq, so wlog i ě j. Therefore, we have
that p|x2`y2 “ g2i`g2j , hence p|g2pi´jq`1. On the other side, recall that in the proof of corollary
2.3 we had that p|gpp´1q{2 ` 1, thus we obtain g2pi´jq ” gpp´1q{2pmod pq. Finally, since order of g
is p ´ 1, the last relation implies that p´1

2 ” 2pi ´ jqpmod p ´ 1q, which is impossible since p´1
2 is

odd. Contradiction!
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Proof of the Sum of two squares theorem. On one side suppose that γj “ 2δj for all j “ 1, 2, ..., s.
Observe that all numbers 2, p1, ..., pr, q

2
1 , ..., q

2
s are BMS numbers (for pi it follows from Fermat’s

theorem on sum of two squares and for others its obvious), so we can just use lemma 2.5 a bunch
of times to obtain that n is a BMS number.

The converse direction we will prove via induction on n. It is obvious that 1 and 2 are BMS
numbers, so suppose that the claim is true for all numbers less than n. Now suppose that n “ x2`y2

and if n doesn’t have a prime factor of the form 4k`3, then we are done. Otherwise, take its arbitrary
prime factor p “ 4k ` 3 and use lemma 2.7 to conclude that p|x and p|y. Therefore, we have that

p2|n so n
p2 “

´

x
p

¯2

`

´

y
p

¯2

implies that n{p2 is a BMS number. Now we just apply induction

hypothesis on n{p2 and it is clear that this will imply the wanted conclusion for n.

3 Proof via infinite descent

The principle of infinite descent is just another way of using the fact that the set of natural numbers
is well-order. Therefore, this method is just one variation of simple induction.

Here we will present Euler’s original proof of Fermat’s theorem on sum of two squares. We will
need three preperatory lemmas among which the third one is the main step in the proof.

Lemma 3.1. If n is a BMS number and its prime divisor p is also a BMS number, then n{p is a
BMS number.

Proof. Let us write n “ a2 ` b2 and p “ c2 ` d2, and observe that we have

pcb´ adqpcb` adq “ c2b2 ´ a2d2 “ c2pa2 ` b2q ´ a2pc2 ` d2q “ c2n´ a2p.

Since p is a prime and p|n, we must have p|cb ´ ad or p|cb ` ad. Wlog suppose that p|cb ´ ad
(the other case is very similar) and recall that from lemma 2.5 we have np “ pa2 ` b2qpc2 ` d2q “

pac` bdq2 ` pad´ bcq2. Therefore, it also must hold p|ac` bd which finally gives us

n

p
“
a2 ` b2

c2 ` d2
“

ˆ

ac` bd

p

˙2

`

ˆ

ad´ bc

p

˙2

Lemma 3.2. If n is a BMS number and its divisor m|n isn’t, then n{m has a (positive) divisor
which is not a BMS number.

Proof. Let us write n “ mp1p2...pr, where all pi are prime numbers. We claim that one of the
numbers p1, p2,...,pr (which all are divisors of n{m) is not a BMS number. Suppose on the contrary
and apply first lemma 3.1 on n and p1 to obtain that n{p1 is a BMS number. Then apply this same
lemma on numbers n{p1 and p2 to obtain that n{pp1p2q is a BMS number. Continuing in this fashion
(at the end) we obtain that n{pp1p2...prq “ m is a BMS number, which is a contradiction.

Lemma 3.3. If m and n are coprime integers, then every divisor of m2 ` n2 is a BMS number.

Proof. If m2`n2 is prime, then the claim is trivial, so suppose this is not the case. Suppose on the
contrary and among all triples pm,n, aq for which we have

(i) m and n are coprime;

(ii) a|m2 ` n2;

(iii) a is not a BMS number,

pick one with x :“ m2 ` n2 minimal and among all such one with a minimal. Our goal is to find a
”smaller” triple pm1, n1, a1q.

Observe that a ą 2 and let us choose natural numbers α, β P N such that |m´ αa| and |n´ βa|
are minimal. Then numbers b :“ m ´ αa and c :“ n ´ βa definitely satisfy |b| ď a

2 and |c| ď a
2 .

Easy calculation give us that

x “ m2 ` n2 “ pb` αaq2 ` pc` βaq2 “ b2 ` c2 ` ap2αb` 2βc` α2a` β2aq (2)
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so a|x implies that a|b2` c2. Then we can write b2` c2 “ ra (for some r P N) and let d :“ gcdpb, cq.
Since m “ b ` αa and n “ c ` βa are coprime, we conclude that pa, dq “ 1. Since we also have
d2|b2 ` c2 “ ra, we conclude that d2|r. So, let us denote b “ dm1, c “ dn1 and r “ d2s to obtain
m2

1 ` n
2
1 “ as. Since a is not a BMS number, we can apply lemma 3.2 on numbers m2

1 ` n
2
1 and a

to obtain some divisor a1 of s “ pm2
1 ` n

2
1q{a which is not a BMS number.

Finally, we claim that pm1, n1, a1q is a smaller triple which satisfies (i)-(iii). By our definitions
of those numbers, we definitely have properties (i)-(iii). On one hand we have that (2) implies
m2

1 ` n
2
1 ď b2 ` c2 ď m2 ` n2 and on the other side

a1a ď sa “ m2
1 ` n

2
1 ď b2 ` c2 ď

a2

4
`
a2

4
“
a

2
a,

thus a1 ď a{2 ă a.

The reason why thus method is called ”infinite descent” is because more-or-less we constructed
an infinite sequence of triples which is not possible in N3. Now the main theorem will be an easy
corollary of our last result.

Proof of Fermat’s theorem on sum of two squares. Take arbitrary prime number p “ 4k`1 and we
need to prove that it is a BMS number. From Fermat’s little theorem, we know that all numbers
14k, 24k, ..., p4kq4k have residue 1 modulo p. Therefore, all differences 24k´14k, ..., p4kq4k´p4k´1q4k

are divisible by p. Observe that every i P t1, 2, ..., 4k ´ 1u we have that

pi` 1q4k ´ ik “ ppi` 1q2k ` i2kqppi` 1q2k ´ i2kq

and that p|rpi` 1qks2 ` riks2 would with lemma 3.3 imply that p is a BMS number. Therefore, the
only interesting case is when p|pi ` 1q2k ´ i2k for all i P t1, 2, ..., 4k ´ 1u. In other words, in this
case all numbers 22k, 32k, ..., p4kq2k must have residue 1 modulo p, which is a contradiction with
existence of the primitive root modulo p.

The principle of infinite descend is a very useful method when one wants to prove that a certain
equation has no solutions. For example, one can easily solve the following special case of Fermat’s
equation (without citing Fermat’s Last Theorem).

Exercise 3.4 (Fermat’s equation for n “ 4). Prove that x4 ` y4 “ z4 has no solutions in N.

4 Proof via Dirichlet principle

In this section, we will actually prove a stronger result which deals with the number of possible
ways to express a number as a sum of two squares.

Definition 4.1. For a natural number n P N, with r2pnq we will denote the number of distinct ways
to express n as a sum of two squares, that is

r2pnq :“ |tpa, bq P Z2 : a2 ` b2 “ nu|.

Now we can reformulate Fermat’s theorem on sum of two squares as follows: For every prime
number p “ 4k ` 1 we have r2ppq ą 0. Just to be sure that we are on the same page, let us look at
the following example.

Example 4.2. We have that r2p1q “ 4, since 1 “ 12 ` 02 “ p´1q2 ` 02 “ 02 ` 12 “ 02 ` p´1q2.

Definition 4.3. We say that expressing n “ x2 ` y2 of number n as a sum of two squares is
primitive if px, yq “ 1. We will also denote

Qpnq :“ |tpx, yq P Z2 : n “ x2 ` y2 is primitiveu| and

P pnq :“ |tpx, yq P N2
0 : n “ x2 ` y2 is primitiveu|.
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Directly from definitions we obtain that for n ą 1 we have 4P pnq “ Qpnq (observe that n2 “

n2 ` 02 is not a primitive expressing). Moreover, for every n ą 1 we also have that

r2pnq “
ÿ

d2|n

Q
´ n

d2

¯

,

where the sum ranges over all d P N with d2|n. The previous formula follows directly from the
following observation: For every n ą 1 and every expressing n “ x2` y2 if we denote d :“ px, yq we
obtain a primitive expressing n

d2 “ p
x
d q

2 ` p
y
d q

2.

Theorem 4.4. For every n ą 1 number P pnq is exactly the number of solutions of the congruence
x2 ” ´1pmod nq (in group Z{nZ).

Proof. The claim is easily checked for n “ 2, 3, 4, so suppose that n ą 4. Let us consider sets

A :“ tpx, yq P N2
0 : n “ x2 ` y2 primitiveu and

B :“ tx P Z{nZ : n|x2 ` 1u,

where our goal is to show that |A| “ |B|. First, let us define a function F : AÑ B, so take arbitrary
px, yq P A. Since gcdpx, yq “ 1 and n “ x2 ` y2, we also have that gcdpn, yq “ 1. Therefore, the
equation sy “ x in Z{nZ has a unique solution and we define F px, yq :“ s. To see that F is
well-defined, just observe that we have

s2y2 ” x2 ” ´y2pmod nq

and since gcdpy, nq “ 1 also s2 ” ´1pmod nq.
To see that F is injective, suppose that for px1, y1q, px2, y2q P A we have F px1, y1q “ F px2, y2q “

s. Then congruences sy1 ” x1pmod nq and sy2 ” x2pmod nq imply that

x1y2 ” sy1y2 ” y1x2pmod nq. (3)

Since n “ x2
1`y

2
1 “ x2

2`y
2
2 , we must have 0 ď x1, y1, x2, y2 ď

?
n, thus (3) implies that x1y2 “ x2y1.

Since gcdpx1, y1q “ gcdpx2, y2q “ 1, we conclude that x1 “ x2 and y1 “ y2.
We must also prove that F is surjective, so take arbitrary 0 ď s ď n´ 1 with n|s2` 1. Consider

the set tpu, vq P Z2 : 0 ď u, v ď
?
nu which has pt

?
nu ` 1q2 ą n elements. By the Pigeon-hole

principle, we can find two pairs pu1, v1q and pu2, v2q such that u1 ´ sv1 and u2 ´ sv2 have the same
residue modulo n. Therefore, if we define x :“ u1 ´ u2 and y :“ v1 ´ v2, we will have that n|x´ sy
and 0 ď |x|, |y| ď

?
n. Also, observe that not both x and y are zero (since pu1, v1q ‰ pu2, v2q), hence

x2 ` y2 ą 0.
We claim that also not both x and y can be equal to

?
n, which is only not obvious if n “ t2

for some t P N. If this in fact is the case, then x “ y “ t would imply that n|x´ sy “ t´ st, thus
s ” 1pmod tq. However, we already have that s ” ´1pmod nq, thus also s ” ´1pmod tq. Now we
obtained that ´1 ” 1pmod tq which leaves t P t1, 2u and this is impossible since n ą 4.

Therefore, at least one of x and y is strictly less than
?
n, so x2`y2 ă 2n. Also n|x´ sy implies

that x2 ” s2y2 ” ´y2pmod nq, i.e. n|x2` y2. We proved that n|x2` y2 and 0 ă x2` y2 ă 2n, thus
it must hold n “ x2 ` y2. We also claim that gcdpx, yq “ 1 and to see this, denote d :“ gcdpx, yq.
Then x2 ` y2 “ n implies d2|n and sy ” xpmod nq implies that syd ”

x
d pmod n

d q, thus

n

d2
“
x2 ` y2

d2
”

ˆ

s
y

g

˙2

`

´y

d

¯2

” ´

´y

d

¯2

`

´y

d

¯2

“ 0pmod n{dq,

thus d “ 1. Finally, if x and y have the same sign, then we have F p|x|, |y|q “ s and if they have the
opposite sign, then F p|y|, |x|q “ s. In any case, we proved that F is surjective.

I believe that the key part of the previous proof was the use of pigeon-hole principle. All other
stuff is just playing with elementary number theory.

The previous theorem was the main step in the proof of the Fermat’s theorem on some of two
squares and now comes the easy part.
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Proof of Fermat’s theorem on sum of two squares. Let p “ 4k` 1 be a prime and we need to prove
that r2ppq ‰ 0. Since we have that

r2ppq “
ÿ

d2|p

Q
´ p

d2

¯

“ Qppq “ 4P ppq,

it is enough to see why P ppq ‰ 0. The previous theorem tells us that this is equivalent to proving
that equation x2 ” ´1pmod pq has a non-trivial solution, and this is just a corollary 2.3.

However, the story doesn’t end here. We promised to ”provide” some kind of a formula for
r2pnq, so this is our next goal. We need to introduce here several classical notions from number
theory.

Definition 4.5. Function f : N Ñ C is multiplicative if for all coprime natural numbers m and
n we have fpmnq “ fpmqfpnq.

Observe that every multiplicative function N Ñ C is completely determined by its values in
powers of primes (use this to solve exercise 4.9).

Definition 4.6. For functions f : NÑ C and g : NÑ C we define their Dirichlet12 convolution
f ˚ g as a function NÑ C given with

pf ˚ gqpnq :“
ÿ

d|n

fpdqg
´n

d

¯

.

This operation is some kind of a discrete analogon of the classical analytical convolution which
we define for two functions Rn Ñ R.

Exercise 4.7. Prove that the set of all functions NÑ C with addition ` and Dirichlet convolution
˚ builds an integral domain. Which elements of this integral domain are invertible?

Dirichlet convolution is an incredible useful tool when we assign to every function N Ñ C
a certain Dirichlet series (for example, Dirichlet series of function n ÞÑ 1 will be the well-known
Riemann’s zeta function ζpsq). These Dirichlet series enable us to throw into play a strong machinery
of complex analysis to try solving various number-theoretic problems. For example, if one decides on
following this road, soon he will be able to understand proofs of (very deep) theorems like Dirichlet’s
theorem on prime numbers in arithmetic progressions13 and the Prime number theorem14. I drifted
away a little bit here, so let me get back to our story.

Lemma 4.8. If functions f : NÑ C and g : NÑ C are multiplicative, then so is f ˚ g.

Proof. We just check that for arbitrary coprime m and n we have

pf ˚ gqpmnq “
ÿ

d|mn

fpdqg
´mn

d

¯

“
ÿ

d1|m,d2|n

fpd1d2qg

ˆ

m

d1

n

d2

˙

“
ÿ

d1|m

fpd1qg

ˆ

m

d1

˙

ÿ

d2|n

fpd2qg

ˆ

n

d2

˙

“ pf ˚ gqpmq ¨ pf ˚ gqpnq.

Exercise 4.9. If we denote with ϕpnq Euler function15, prove that
ř

d|n ϕpdq “ n.

12Peter Gustav Lejeune Dirichlet(1805–1859)
13If gcdpa, bq “ 1 then the sequence a, a` b, a` 2b, ... has infinitely many primes!
14If we denote with πpxq the number of primes less than x, then it holds limxÑ8pπpxq log xq{x “ 1
15We define ϕpnq to be the number of elements of t1, 2, ..., nu which are coprime with n. One can easily prove via

combinatorial argument or via Chinese Remainder theorem that ϕ is multiplicative
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So, what does this have to do with sums of two squares? Recall that our notions lead us to the
formula

r2pnq “
ÿ

d2|n

Q
´ n

d2

¯

and if denote with Npnq the number of solutions of the congruence x2 ” ´1pmod nq (in group
Z{nZ), then theorem 4.4 gives us

r2pnq “ 4
ÿ

d2|n

N
´ n

d2

¯

.

If we define a function ρ : NÑ C which is a detector of perfect squares

ρpnq :“

#

1, n is a perfect square

0, otherwise
,

then we obtain a formula

r2pnq “ 4
ÿ

d2|n

N
´ n

d2

¯

“ 4
ÿ

d|n

N
´n

d

¯

ρpdq “ rpN ˚ ρqpnq.

This is a classical cheap trick in analytic number theory to obtain some new information by intro-
ducing an appropriate helping function.

Theorem 4.10. Function r2pnq{4 is multiplicative.

Proof. Since this function is given as a Dirichlet’s convolution, by lemma 4.8 it is enough to prove
that functions Npnq and ρpnq are multiplicative. For function ρpnq this is straightforward, while for
Npnq one just have to check that the restriction of the isomorphism

Φ : Z{mnZÑ Z{mZ‘ Z{nZ

that we have from the Chinese Remainder theorem will map bijectively solutions of the equation
x2 ” ´1pmod mnq to pairs of solution of equations x2 ” ´1pmod mq and x2 ” ´1pmod nq.

Now we are ready to define our main player which will encode the necessary analytical informa-
tion.

Definition 4.11. Let G be a finite abelian group. Every homomorphism from G to the multiplicative
group Cˆ we call a character of group G.

Wow, this is actually much more general definition then the thing that we need, but I couldn’t
resist not mentioning it. In representation theory one can prove that irreducible representations
of a finite abelian group are all one dimensional, thus can be identified with their characters (this
sentence is here to ”explain” where does the motivation for something like this come from).

Since we are interested in a finite group in which every element has a finite order, every character
is actually a homomorphism G Ñ S1 Ď C (to the unit circle). These characters naturally form a
group (Pontryagin dual of G) which is naturally isomorphic to G. The most interesting cases are
G “ Z{nZ and G “ pZ{nZqˆ. In the first one we have a very explicit description of all characters
and we can do a very nice discrete Fourier analysis without much troubles. On the other side, in the
second cases we come to a very mysterious objects which we call Dirichlet characters. These can
be naturally identified with n-periodic completely multiplicative16 functions N Ñ C which vanish
for all m P N not coprime with n. These functions encode incredibly many analytic information
and play a central role in the theory of L-series. Ups, I did it again...

Here we will need only one simple example of a Dirichlet character χ4 : N Ñ C which is given
by

χ4pnq :“

$

’

&

’

%

1, n ” 1pmod 4q

´1, n ” 3pmod 4q

0, otherwise

.

One can easily check that this defines a (completely) multiplicative function on N.

16Function f : NÑ C is completely multiplicative if fpmnq “ fpmqfpnq for all m,n P N
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Theorem 4.12. For all n P N we have r2pnq “ 4
ř

d|n χ4pdq.

Proof. According to theorem 4.10 and lemma 4.8 we have that functions r2pnq{4 and
ř

d|n χ4pdq
are multiplicative, so it is enough to prove that equality holds for all powers of primes. Here details
become a little bit (elementary but) messy, so I am gonna skip this part (please contact me if you
would like to discuss this).

The previous theorem gives us a very nice way to calculate r2pnq in concrete cases. It also
provides us an important analytic approach if function r2pnq turns up in some other calculations.
In particular, it reduces the Gauss circle problem to the problem of estimating the expression

ÿ

nďr

r2pnq “
ÿ

nďr

ÿ

d|n

χ4pdq

which gives us some starting point at this hard problem. I will close this section with another proof
of the Sum of two squares theorem.

Proof of the Sum of two squares theorem. Let n “ 2αpβ1

1 ...pβrr q
γ1
1 ...qγss (where pis and qjs are of the

form 4k ` 1 and 4k ` 3 respectively) be any natural number and consider

r2pnq “ 4
ÿ

d|n

χ4pdq.

We have that n is a BMS number iff r2pnq ‰ 0, therefore iff
ř

d|n χ4pdq ‰ 0. Since function
ř

d|n χ4pdq is multiplicative, we have that

ÿ

d|n

χ4pdq “
ÿ

d|2α

χ4pdq ¨
r
ź

i“1

ÿ

d|p
βi
i

χ4pdq ¨
s
ź

j“1

ÿ

d|q
γj
j

χ4pdq.

The first sum and all sums in the first product all have a positive value. Therefore, we have that n
is a BMS number iff every sum in the second product has a positive value and this happens iff all
γjs are even.

5 Proof via Gaussian integers

The proof which we will give in this section is due to Dedekind. The central object which we will
study in this section will be the ring of Gaussian integers.

Definition 5.1. The subring
Zris :“ ta` ib : a, b P Zu

of the field C of complex numbers we call the ring of Gaussian integers.

Equivalently, the ring of Gaussian integers is exactly the ring of imaginary quadratic field ex-
tension Qris of Q (but we will not need this).

This ring has some very nice properties. We define the norm N : Zris Ñ N0 with Npa` ibq :“
a2 ` b2 which is just the square of the module of a complex number. One can easily show that this
is an euclidean norm on integral domain Zris which will give him a structure of euclidean ring. In
particular, we have that Zris is a principal ideal ring, Dedekind domain and a unique factorization
domain. We actually only need the fact that it is unique factorization domain, because we are
interested in characterizing its prime elements.

Observe that every invertible element of u P Zris must have norm 1 since NpuqNpu´1q “

Npuu´1q “ Np1q “ 1, while Npuq and Npu´1q are non-negative integers. Now one can easily check
that those are exactly 1, ´1, i and ´i. Since we are in a unique factorization domain, every element
in Zris whose norm is a prime integer must be a prime element of Zris.

Lemma 5.2. Every prime integer p P Z of the form 4k ` 3 is also a prime Gaussian integer.
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Proof. Suppose that p “ px ` iyqpz ` itq and we have to prove that one of x ` iy and z ` it is
a unit. If we suppose on the contrary, then both of them must have norm larger than 1. Since
Npx ` iyqNpz ` itq “ Nppq “ p2, we have that Npx ` iyq “ p so p “ x2 ` y2. However, a prime
number of the form 4k ` 3 is not a BMS number, so we obtain a contradiction.

Theorem 5.3. Gaussian integer x P Zris is prime iff it is associated to one of the following

(a) 1` i or 1´ i;

(b) A prime integer of the form 4k ` 3;

(c) Element y “ a` ib P Zris such that a2 ` b2 is a prime integer of the form 4k ` 1.

Proof. Two numbers in (a) have prime norm 2, so they are both prime. Lemma 5.2 tells us that all
numbers in (b) are Gaussian primes. Finally, if a2 ` b2 “ p is a prime number of the form 4k ` 1,
then we have that Npa` ibq “ p is a prime, so a` ib is a prime Gaussian integer.

Conversely, suppose that x “ a` ib is a Gaussian prime. Suppose first that b ‰ 0 and a ‰ 0. In
this case n :“ a2 ` b2 “ pa ` ibqpa ´ ibq is a prime integer, because otherwise we could write him
as a product of primes and obtain a contradiction with the fact that Zris is a unique factorization
domain. Therefore, we have that n is a BMS prime number, so it must be 2 (in which case we get
(a)) or of the form 4k ` 1 (in which case we get (c)).

Next, suppose that b “ 0. Clearly, integer p :“ x “ a must also be a prime integer (besides being
a prime Gaussian integer). Since 2 “ p1 ` iqp1 ´ iq is not a prime Gaussian integer, we have that
p ‰ 2. If p is of the form 4k`3 then we obtain (b), so we must prove that p is not of the form 4k`1.
Suppose on the contrary, that p “ 4k` 1 and find some m P Z such that p|m2` 1 “ pm` iqpm´ iq
(using corollary 2.3). Since p is a prime, we must have that p|m ` i or p|m ´ i. However, in both
cases we get an easy contradiction since p doesn’t divide the imaginary parts of m` i and m´ i.

Finally, suppose that b ‰ 0 and a “ 0. In this case x “ ib is associated with ix “ ´b which is
just the case b “ 0. This proves the theorem.

Proof of Fermat’s theorem on sum of two primes. Suppose p “ 4k`1 is a prime. Then theorem 5.3
says that p is not a prime Gaussian integer, so we have that p “ pa`ibqpc`idq for some a, b, c, d P Z.
Then also Npa` ibqNpc` idq “ Nppq “ p2 and since a` ib and c` id are not invertible, we must
have Npa` ibq “ Npc` idq “ p. However, this exactly means that p “ a2 ` b2.

The ring Zris is just one example of a ring extension of Z with nice properties. In general,
for any finite field extension K of Q we can consider all elements of K which are zeros of monic
polynomials in Zrxs. These elements form a subring of K which we denote with OK and call the
ring of integers of K. Although we are often without the luck with OK not being a unique
factorization domain (unlike Zris), there are some other incredibly important properties which we
always have. Namely, the ring OK is always a Dedekind domain, which implies that every ideal
of OK has a unique factorization into (powers of) prime ideals. Therefore we get some kind of
analogon of the Fundamental theorem of arithmetic.

Next, if we denote with n :“ rK : Qs the degree of the extension, then one can show that OK is
a free Z-module of rank n. This enables us, among other things, to very nicely describe elements of
rings of integers. For example, in the case of OK “ Zris (when K “ Qris) we have that all elements
are of the form a ` ib for a, b P Z, i.e. Zris “ Z ` iZ. One can even associate to every Dedekind
domain (hence to every ring of integers) a certain class group (which can be shown to be finite in
the case of rings of integers) which codes some important algebraic information about that ring.
For example, the class group is trivial iff the ring is a unique factorization domain (iff this ring is a
principal ideal domain). This the beginning of the class field theory where also Galois theory plays
a very important role.

6 Proof via Dirichlet approximation

In this section we will once again see how does Pigeon-hole principle come into play when it comes
to the Fermat’s theorem on sum of two squares.
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Recall that every real number α P R and every ε ą 0 we can find a rational number17 p{q P Q
such that

ˇ

ˇ

ˇ

ˇ

α´
p

q

ˇ

ˇ

ˇ

ˇ

ă ε.

Well, this is just another way of saying that Q is dense in R (topologically and orderwise). The next
interesting question would be, how complicated this fraction p

q needs to be and can we control that
somehow? Some partial answer to this question is provided by the following theorem of Dirichlet.

Theorem 6.1 (Dirichlet’s approximation theorem). For arbitrary α P R and n P N there is a
rational number p

q P Q such that 0 ă q ď n and

ˇ

ˇ

ˇ

ˇ

α´
p

q

ˇ

ˇ

ˇ

ˇ

ď
1

qpn` 1q
.

Proof. Let us divide interval r0, 1s on n` 1 (almost) equal parts

„

0,
1

n` 1

˙

,

„

1

n` 1
,

2

n` 1

˙

, ...,

„

n

n` 1
, 1



.

We can consider n` 2 numbers 0, α´ tαu, 2α´ t2αu, ..., nα´ tnαu i 1 (some of them can be equal)
and Pigeon-hole principle tells us that two of those fellas most drop into the same interval.

If one of them is zero, then for some m P t1, 2, ..., nu we have that |mα ´ tmαu| ă 1
n`1 so we

can take p :“ tmαu and q :“ m. If one of them is 1, then we have that for some m P t1, 2, ...,mu it
holds |mα´ tmαu´ 1| ď 1

n`1 , so we can take p :“ tmαu´ 1 and q :“ m.
Finally, suppose that for some 1 ď m1 ă m2 ď n we have

|αm2 ´ tαm2u´ pαm1 ´ tαm1uq| ă
1

n` 1
.

Then we can take p :“ tm2αu´ tm1αu and q :“ m2 ´m1, thus we are done.

By the way, there are some pretty interesting results that deal with the sequence tαu, t2αu, ...
(here we denoted with txu :“ x´ txu fractional part of x) which we used in the proof of Dirichlet’s
approximation theorem. For example, the following theorem of Weyl is one of the starting points
of ergodic theory.

Theorem 6.2 (Weyl’s theorem). If α P R is irrational number, then the sequence tαu, t2αu, t3αu, ...
is equidistributed in the interval r0, 1s, i.e. for every measurable set B Ď r0, 1s we have that18

lim
nÑ8

|tm ď n : tmαu P Bu|

n
“ mpBq.

We can actually immediately proceed to the proof of our main theorem (of this talk). Let us
just note that nothing prevents us of taking a rational number α in Dirichlet’s theorem.

Proof of the Fermat’s theorem on sum of two squares. Let p “ 4k`1 be a prime and using corollary
2.3 pick some m P N with p|m2`1. Let us take α :“ ´m

p and n :“ t
?
pu in Dirichlet’s approximation

theorem to obtain a rational number a
b P Q such that 0 ă b ď t

?
pu ď

?
p and

ˇ

ˇ

ˇ

ˇ

´
m

p
´
a

b

ˇ

ˇ

ˇ

ˇ

ă
1

bpn` 1q
ă

1

b
?
p
.

If we denote c :“ mb` pa, we obtain that |c| ă pb
b
?
p “

?
p. Therefore, we have that 0 ă b2 ` c2 ă

2
?
p2
“ 2p and

b2 ` c2 “ b2 ` pmb` paq2 ” b2 `m2b2 ” b2 ´ b2 “ 0pmod pq,

thus p “ b2 ` c2.

17Here and later, we suppose that p and q are coprime integers in situations like this
18Where we denote with m the Lebesgue measure on r0, 1s
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How crazy is this?!? We approximated a rational number by a ”less complicated” rational
number and obtained some very non-trivial information from that. Strange are the ways of number
theory...

Until the end of this section, I would like to shortly discuss two more things that are closely
related to the Dirichlet’s approximation theorem. On one side, we have the following direct corollary.

Corollary 6.3. For every α P R there is a rational number p
q P Q such that

ˇ

ˇ

ˇ
α´ p

q

ˇ

ˇ

ˇ
ă 1

q2 .

Now we can ask a question whether or not we can strengthen up this somehow and this opens the
door for entirely new subarea of number theory called Theory of Diophantine Approximations. For
example, it is not too hard to prove Hurwitz’s theorem which replaces 1

q2 with 1?
5q2

for irrational

numbers α. There is also the following nice theorem of Liouville which he used to construct the
very first explicit example of a transcendental number.

Theorem 6.4 (Liouville’s theorem). If α P R is an algebraic number whose minimal polynomial
has degree d, then there is a constant C ą 0 such that for every rational number p

q P Q we have

ˇ

ˇ

ˇ

ˇ

α´
p

q

ˇ

ˇ

ˇ

ˇ

ě
C

qd
.

Exercise 6.5. Using Liouville’s theorem, prove that the Liouville’s number

L :“
8
ÿ

k“1

1

10k!

is transcendental.

Finally, the following deep theorem of Roth partially answers the starting question and for this
theorem he won a Field’s medal.

Theorem 6.6 (Roth’s theorem). For every algebraic irrational number α and every ε ą 0 there

are only finitely many rational numbers p
q P Q with

ˇ

ˇ

ˇ
α´ p

q

ˇ

ˇ

ˇ
ă 1

q2`ε .

On the other side, we can start complaining of non-counstructiveness19 of the Dirichlet’s ap-
proximation theorem. Here, continued fraction can come very handy. Namely, every real number
α P R can be uniquely written in the form

α “ a0 `
1

a1 `
1

a2`...

,

where a0, a1, a2, ... are integers. Therefore, to every natural number we can assign a sequence
ra0, a1, ...s which we call a continued fraction. Here, we can see with out naked eye how does our
approximation looks like. More precisely, we can look at the finite sequence of integers ra0, a1, ..., ans
which induces a rational number

pnpαq

qnpαq
:“ a0 `

1

a1 `
1

a2`...`
1
an

.

Then one can show (these are just some exhausting inductions) that for every m P N we have

ˇ

ˇ

ˇ

ˇ

α´
pnpαq

qnpαq

ˇ

ˇ

ˇ

ˇ

ă
1

qnpαqqn`1pαq

which almost immediately implies the Dirichlet’s approximation theorem and gives us more explicit
construction of the approximation.

By the way, these continued fractions are very mysterious and somewhat random objects. For
example, one can use ergodic theory to prove the following (I will be gentle here) what-in-the-name-
of-fuck result.

19It is in some way constructive, but computationally deadly I would say
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Theorem 6.7. For almost every real number20 x “ r0, a1, a2, ...s P p0, 1q the digit j appears in the
continued fraction with density

2 logp1` jq ´ log j ´ logp2` jq

log 2

and

lim
nÑ8

1

n
log

ˇ

ˇ

ˇ

ˇ

x´
pnpαq

qnpαq

ˇ

ˇ

ˇ

ˇ

“ ´
π2

6 log 2
.

I would like to finish this section with a very unexpected connection of continued fractions with
algebraic number theory.

While examining real quadratic field K of Q, one can prove that the group of invertible elements
in the ring of integers OK is always a cyclic group (via Dirichlet’s theorem on the group of units of
OK). Therefore, it is generated by one single element which we can pick to be larger than 1 and we
call him the fundamental unit of extension K.

Theorem 6.8. Let O “ Zrδs where δ is a real quadratic integer which is the bigger of two solutions
of the minimal equation for δ. Then the continued fraction of δ has some minimal period l and
ε :“ pl´1pδq ´ δql´1pδq is the fundamental unit of O.

7 Proof via Minkowski theorem

In this section we will see a very intuitive (but incredibly powerful) theorem of Minkowski. For this,
we will need a few basic notations.

Definition 7.1. For an additive subgroup H ď Rn we say that it is discrete iff B XH is a finite
set for every bounded subset B Ď Rn.

Equivalently, a subgroup H ď Rn is discrete iff it is a discrete topological subgroup of Rn (with
inherited topology).

It is not too hard to prove that every discrete subgroup of Rn must be finitely generated and
since it is abelian, from the Fundamental theorem for finitely generated abelian groups we obtain
that it must be isomorphic to Zk for some k P N. Moreover, its Z-basis will be consisted of R-linearly
independent vectors, so we will have k ď n. We will not actually use any of these results (so they
are more like a teaser), thus I omitted these proofs.

Definition 7.2. Let B “ tv1, ..., vnu be some basis of Rn. A lattice generated by B we define with

ΛB :“ tc1v1 ` ...` cnvn : c1, ..., cn P Zu.

Also, we define the fundamental parallelogram of lattice ΛB with

PB :“ tα1v1 ` ...` αnvn : α1, ..., αn P r0, 1qu.

Therefore, a lattice in Rn is exactly some fully-dimensional discrete subgroup of Rn. The canon-
ical example of a lattice would be Zn, which we actually call the integer lattice.

Lemma 7.3. If B “ tv1, ..., vnu is a basis of Rn and vi “ pai1, ..., ainq for all i P t1, 2, ..., nu, then
VolpPBq “ |detpraijsq| ‰ 0.

Proof. We just apply the simple change of coordinates vi ÞÑ ei to obtain

VolpPBq “

ż

PB

1dm “

ż

r0,1sn
|detpaijq|dm “ |detpaijq|.

Since among us there are some people who like examples, let me give you one. Consider vectors
v1 “ p2, 1q and v2 “ p1, 3q which form a basis B “ tv1, v2u of R2. Then we will obtain a lattice on
the left picture whose fundamental parallelogram is coloured in yellow and elements of the lattice
are bolded. As the picture on the right suggests, it should be the case that the space Rn is tilled
with translated copies of the fundamental parallelogram and this indeed is the case.

20with respect to the Lebesgue measure
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Lemma 7.4. For any basis B of Rn we have that

Rn “
ğ

λPΛB

pλ` PBq,

where
Ů

denotes the disjoint union.

Proof. This is a straightforward check without interesting details.

Now we come to the central theorem of this section whose statement is (I would say) pretty
intuitive.

Theorem 7.5 (Minkowski’s theorem Vol. 1). Let B be a basis of Rn and let U Ď Rn be a Lebesgue-
measurable subset such that21 mpUq ą VolpPBq. Then there are distinct vectors u1, u2 P U such that
u1 ´ u2 P ΛB.

Proof. From lemma 7.4 we obtain that

U “
ğ

λPΛB

rU X pλ` PBqs.

Now by the well-known property of Lebesgue measure, we have that

mpUq “ m

˜

ğ

λPΛB

rU X pλ` PBqs

¸

“
ÿ

λPΛB

mpU X pλ` PBqq.

Since m is a translation-invariant measure (the Haar measure on the locally compact topological
group Rn), we have that for all λ P ΛB holds mpU X pλ` PBqq “ mppU ´ λq X PBq. Therefore, we
obtain that

mpUq “
ÿ

λPΛB

mppU ´ λq X PBq

and since mpUq ą VolpPBq “ mpPBq and since every set pU ´ λq X PB of the last sum is contained
in PB, we can find two pU ´ λq X PB and pU ´ λ1q X PB which overlap. Therefore, there is some
x P PB such that u1 :“ x`λ, u2 :“ x`λ1 P U and now just observe that u1´u2 “ λ´λ1 P ΛB.

We will need actually a different (weaker) version of Minkowski’s theorem here, so let us quickly
prove it.

Corollary 7.6 (Minkowski’s theorem Vol. 2). Let B be a basis of Rn and let S Ď Rn be a Lebesgue-
measurable convex symmetric subset which satisfies mpSq ą 2n VolpPBq. Then the intersection
ΛB X S contains a nonzero element.

21Here, we again denote with m Lebesgue measure on Rn
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Proof. Let us consider the set S1 :“ S{2 “ tx{2 : x P Su which is obviously convex symmetric,
Lebesgue-measurable and satisfies mpS1q ą VolpPBq. From Minkowski’s theorem Vol. 1 we obtain
two points u1, u2 P S1 such that u1 ´ u2 P ΛB. First symmetry of S1 gives us that ´u2 P S1 and
then convexity of S1 gives us that 1

2u1 `
1
2 p´u2q P S1. This means that u1 ´ u2 P S, so we found

an element u1 ´ u2 P ΛB X S which is not zero.

What the hell does this game with lattices has to do with sum of two square? Well, we just look
at the circle!

Proof of Fermat’s theorem on sum of two squares. Let p “ 4k ` 1 be prime and pick m P N with
p|m2 ` 1 using corollary 2.3. On one side, consider the open ball

S :“ tpx, yq P R2 : x2 ` y2 ă 2pu

which is open (hence Lebesgue-measurable), convex, symmetric and has volume mpSq “
?

2p
2
π “

2pπ. On the other side, consider the lattice Λ generated by vectors u :“ pp, 0q and v “ pm, 1q. The
volume of the fundamental parallelogram equals

VolpPΛq “

∣∣∣∣ p 0
m 1

∣∣∣∣ “ p ă
2pπ

22
,

so we can apply Minkowski’s theorem Vol. 2! Therefore, we obtain some nonzero point pa, bq P SXΛ
and let us write pa, bq “ cu` dv for some c, d P Z. Then we have that a “ cp` dm and b “ d, thus

a2 ` b2 “ pcp` dmq2 ` d2 ” d2m2 ` d2 ” ´d2 ` d2 “ 0pmod pq.

Since also 0 ă a2 ` b2 ă 2p (because pa, bq is a nonzero point in S), we conclude that p “ a2 ` b2.
Voilá!

Actually, Minkowski’s theorem is so strong that we can prove Legendre’s theorem on sum of
three squares and Lagrange’s theorem on sum of four squares. To avoid some technical details, we
will only prove Lagrange’s theorem which itself requires some small amount of additional work. The
following two preparational lemmas will be analogons of lemma 2.5 and corollary 2.3.

Lemma 7.7. If m and n can be written as sums of four squares, then mn can also be written as
sum of four squares.

Proof. This follows from the following ”beautiful” identity

pa2 ` b2 ` c2 ` d2qpe2 ` f2 ` g2 ` h2q “ pae´ bf ´ cg ´ dhq2 ` paf ` be` ch´ dgq2

` pag ´ bh` ce` dfq2 ` pah` bg ´ cf ` deq2.

Lemma 7.8. If p is a prime odd number, then there are integers r and s such that p|r2 ` s2 ` 1.

Proof. Let g be a primitive root modulo p. First, observe that the congruence x2 ” mpmod pq has
a solution for all m P t0, g2, g4, ..., gp´1u, therefore for at least pp` 1q{2 values of m. On the other
side, by the same argument the congruence x2 ” ´m´1pmod pq has a solution for at least pp`1q{2
values of m. Since p`1

2 `
p`1

2 ą p, we can find some m P N such that congruences x2 ” mpmod pq
and x2 ” ´m´1pmod pq simultaneously have some solutions r and s respectively. This means that
p|r2 ´m and p|s2 `m` 1, thus p|r2 ` s2 ` 1.

Proof of Lagrange’s theorem on some of four squares. The claim is obvious for n “ 1 and n “ 2,
and according to lemma 7.7, it is enough to prove that every prime number can be written as a
sum of four squares. Fix some prime number p ą 2 and find r, s P N such that p|r2 ` s2 ` 1 using
lemma 7.8. On one side, consider the open ball

S :“ tpx, y, z, tq P R4 : x2 ` y2 ` z2 ` t2 ă 2pu
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which is open (hence Lebesgue-measurable), convex, symmetric and has volume22

mpSq “
π4{2

Γp 4
2 ` 1q

a

2p
4
“ 2π2p2.

On the other side, consider the four vectors u1 “ pp, 0, 0, 0q, u2 “ p0, p, 0, 0q, u3 “ pr, s, 1, 0q i
u4 “ ps,´r, 0, 1q which generate a lattice Λ whose fundamental parallelogram has volume∣∣∣∣∣∣∣∣

p 0 0 0
0 p 0 0
r s 1 0
s ´r 0 1

∣∣∣∣∣∣∣∣ “ p2 ă
2π2p2

24
“

1

24
mpSq.

Now Minkowski’s theorem Vol. 2 gives us some nonzero point pa, b, c, dq P S X Λ and let us write
pa, b, c, dq “ c1u1 ` c2u2 ` c3u3 ` c4u4 for some c1, c2, c3, c4 P Z. This gives us equalities

a “ c1p` c3r ` c4s, b “ c2p` c3s´ c4r, c “ c3, d “ c4

which we use to see that

a2 ` b2 ` c2 ` d2 “ pc1p` c3r ` c4sq
2 ` pc2p` c3s´ c4rq

2 ` c23 ` c
2
4

” pc3r ` c4sq
2 ` pc3s´ c4rq

2 ` c23 ` c
2
4

“ c23pr
2 ` s2 ` 1q ` c24pr

2 ` s2 ` 1q ” 0pmod pq.

Since also 0 ă a2 ` b2 ` c2 ` d2 ă 2p (because pa, b, c, dq is a nonzero element of S) we conclude
that p “ a2 ` b2 ` c2 ` d2.

Before ending this section, let us make some addition comments. Minkowski’s theorem has its
very important application in algebraic number theory. Namely, for any finite extension K of Q, we
have the ring of integers OK is a lattice in Rn (where n is the degree of extension K{Q). Moreover,
one can prove that every ideal of a Ď OK is a finitely generated Z-submodule of OK (recall that OK

is noetherian) of rank n and to conclude that a is also a lattice in Rn. Then Minkowski’s theorem
can be used to bound the norm of ideal a, and after that it is not two hard to conclude that the class
group of extension K{Q is finite. Sorry, I am drifting away again here. In any case, this theorem
plays a very important rule in algebraic number theory.

On the other side, lattice can be defined in a much more general environment. Namely, let G
be any locally compact topological group, which then must have (left) Haar measure. A discrete
subgroup H ď G we call a lattice if the fundamental domain of the quotient space G{H has finite
measure. Two very important example we obtain when we take G1 “ SL2pRq and G2 “ PSL2pRq
which have lattices H1 “ SL2pZq and H2 “ PSL2pZq. In the case of SL2pZq we can geometrically
see Fundamental domain as a consequence of an action of this group on the upper hyperbolic plane
H “ tz P C : Impzq ą 0u via Möbious transformations. Some ergodic theory can be applied here to
analyse geodesic flows on H and here we really find a mixture of several areas of mathematics.

8 Proof via quadratic forms

In this section we will concentrate our attention on Lagrange’s proof of our main theorem which
will use (binary) quadratic forms.

Definition 8.1. Let A “

„

a b
b c



be a symmetric matrix with integer entries. To this matrix we

associate a formal expression fpx, yq “ ax2` 2bxy` cy2 which we call a integer quadratic form.

Another way of seeing a quadratic form associated with matrix A is simply

fpx, yq :“
“

x y
‰

A

„

x
y



.

When we look at the formulation of our problem, this definition can’t come as a surprise since we
are exactly interested in the quadratic form x2 ` y2. More concretely, we are interested in which
integers can be represented by this quadratic form.

22Where Γpxq is the Gamma function
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Definition 8.2. We say that an integer n P N is representable by an integer quadratic form
ax2 ` 2bxy ` cy2 if there are integers x0, y0 P Z such that n “ ax2

0 ` 2bx0y0 ` cy
2
0.

We will need several more standard notations some of them being familiar from linear algebra
course.

Definition 8.3. We say that quadratic forms ax2`2bxy`cy2 and a1x2`2b1xy`c1y2 are equivalent

if there is a matrix A “

„

α β
γ δ



with integer entries and determinant 1 (hence in SL2pZq) such that

ax2 ` bxy ` cy2 “ a1pαx` βyq2 ` b1pαx` βyqpγx` δyq ` c1pγx` δyq2.

In other words, quadratic forms associated with matrices A and B are equivalent iff there is
matrix P P SL2pZq such that A “ PTBP . In this case we also say that matrices A and B are
Z-congruent and matrix P we call a transition matrix.

Of course, this defines an equivalence relation (because we are using only invertible matrices)
and it is easy to see that equivalent forms represent same integers. Now we define an important
invariant of quadratic form.

Definition 8.4. The discriminant of a quadratic form associated with matrix A is defined to be
detpAq.

We say that a quadratic form ax2 ` 2bxy ` by2 is positive definite if for every px0, y0q P

Z2ztp0, 0qu we have ax2
0 ` 2bx0y0 ` cy

2
0 ą 0.

Since equivalent forms represent same numbers, we have that every form equivalent to a positive
form must also be positive.

Lemma 8.5. Equivalent forms have the same discriminant.

Proof. Suppose that forms associated with matrices A and B are equivalent. This means that
we can find a matrix P P SL2pZq such that A “ PTBP , thus Cauchy-Binet formula gives us
detpAq “ detpPTBP q “ detpPT qdetpBqdetpP q “ detpAq (since detpP q “ 1).

The following theorem represents the main step in our proof of the Fermat’s theorem on sum of
two squares. It gives us some kind of canonical form of positive definite quadratic forms. Observe
that we can’t just use well-known canonical forms from linear algebra because there transition
matrices can have real/complex entries.

Theorem 8.6. Every positive definite quadratic form is equivalent to a (positive definite) form with

matrix

„

a b
b c



such that 2|b| ď a ď c. This canonical form of positive definite form we call reduced.

Proof. Consider the positive definite quadratic form gpx, yq “ αx2 ` 2βxy ` γy2 and let a be the
smallest natural number representable by g. Then we can find some r, t P Z such that gpr, tq “ a.
We claim that gcdpr, tq “ 1, so suppose on the contrary that p|r and p|t (for some prime p). Then

equality a “ gpr, tq “ αr2 ` 2βrt ` γt2 implies that p2|a. But now we have that g
´

r
p ,

t
p

¯

“ a
p2

which is a contradiction with minimality of a.
Now, since gcdpr, tq “ 1 (by Bézout’s theorem) the equation ru´ st “ 1 with variables u, s P Z

has a solution. Moreover, if we fix a solution pu0, s0q P Z2, then all other solutions are of the form
psphq, uphqq where sphq “ s0 ` rh and uphq “ u0 ` ht (while h P Z sprints). Observe quickly that
not both sphq and uphq can be zero. The idea is to take the matrix

P :“

„

r sphq
t uphq



to be the transition matrix, where we are going to choose a suitable h P Z. Since detpP q “
ruphq ´ tsphq “ 1 always holds we don’t need to worry about P living in SL2pZq. After the
transformation by matrix P we will obtain

„

aphq bphq
bphq cphq



“

„

r sphq
t uphq

T „

α β
β γ

 „

r sphq
t uphq


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so after some ultra-interesting calculations we get

aphq “ a, bphq “ s0pαr ` βtq ` u0pβr ` γtq ` ah, cphq “ gpsph0q, uph0qq.

On one side, since g is positive definite and since a is the smallest number representable by g, we
obtain that cphq “ gpsph0q, uph0qq ě a “ aphq for any choice of h P Z. Finally, expression bphq has
a fixed value modulo a, so by choosing an appropriate h P Z we may obtain |bph0q| ď a{2. This
completes our construction of the desired matrix.

Corollary 8.7. Every positive-definite quadratic form of discriminant 1 is equivalent to x2 ` y2.

Proof. By theorem 8.6 any positive definite quadratic form with discriminant 1 is equivalent to a

quadratic form f with matrix

„

a b
b c



such that 2|b| ď a ď c. Moreover, by lemma 8.5 this f must

also have discriminant 1, so we have that ac´ b2 “ 1 (hence a ‰ 0). How we have that

a2 ď ac “ b2 ` 1 ď
a4

4
` 1,

which is only possible for a “ 1 (because a ‰ 0). Now 2|b| ď a “ 1 implies b “ 0 and ac “ 1 implies
c “ 1. Therefore, we proved that fpx, yq “ x2 ` y2.

Proof of Fermat’s theorem on sum of two squares. Let p “ 4k` 1 be a prime and pick some m P N
such that p|m2`1. Then we can find some k P N such that m2`1 “ pk and consider the quadratic
form

fpx, yq “ px2 ` 2mxy ` ky2.

This quadratic represents p since fp1, 0q “ p, has discriminant pk ´m2 “ 1 and is positive-definite
because we have

fpx, yq “ p

ˆ

x`
my

p

˙2

` ky2 ´
m2y2

p
“ p

ˆ

x`
my

p

˙2

`
y2

p
.

By corollary 8.7 we know that f is equivalent to x2 ` y2, so the form x2 ` y2 also represents p.

It is far from truth that interaction of quadratic forms with number theory stop here. In com-
pletely analogous way one can introduce ternary quadratic forms which are associated to 3 ˆ 3
symmetric integer matrices and the corresponding notions of equivalence, discriminant and positive
definiteness. Then one can prove that every positive definite ternary quadratic form with discrimi-
nant 1 is equivalent to x2` y2` z2, and from this deduce Legendre’s sum of three squares theorem.
Details are little messier than in the 2ˆ 2 case, so we will skip them.

On the other side, the work of Lagrange and Gauss discovered some very unexpected connec-
tion of quadratic forms with algebraic number theory. Namely, there is a bijective correspondence
between the class group of quadratic field extension K{Q with discriminant D and classes of equiv-
alence of positive definite binary quadratic forms with discriminant D. Unfortunately, there is no
natural operation which would make this collection of forms a group and thus make this correspon-
dence an isomorphism. However, from this we (almost) immediately deduce the following very nice
characterization.

Theorem 8.8. Let K “ Qr
?
Ds be an imaginary quadratic field extension of Q (D ă 0 square-free).

Then the following statements are equivalent

(a) Ring of integers OK is a unique factorization domain;

(b) Ring of integers OK is a principal ideal domain;

(c) The class group of OK is trivial;

(d) There is a unique reduced positive definite (binary) quadratic form of discriminant D.
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This is a very important characterization, since one of the major (Gauss’s) problems was to
determine when rings of integers OK are unique factorization domains. One can prove that this
happens for square-free D ă 0 iff23

D P t´1,´2,´3,´7,´11,´19,´43,´67, 163u.

Only Gauss himself knows why these numbers are so special.

Open Problem 8.9. Find all square free D ą 0 such that Qr
?
Ds is UFD.

It is not even know if there are infinitely many number fields whose rings of integers are UFD!

9 The one-line proof and a proof via partitions

In this section we will present two proofs which use essentially same ideas, but are interesting on
their own. The first one is probably the most boring proof of our main theorem. The reason I don’t
really like it is because it doesn’t give much insight about the problem and what is actually hiding
behind the curtain. Sometimes I find it better to work harder to obtain some surrounding results
in order to better understand the problem.

Anyways, it is definitely interesting to see that our problem has a very short solution which is
due to Zagier. Recall that a function f : A Ñ A we call involution if f2 “ idA. Observe a very
simple fact that if A is a finite set, then the number of fixed points of f must be the same parity as
|A|.

Proof of Fermat’s theorem on sum of two squares. Let p “ 4k ` 1 be a prime and let us consider
the finite set

S :“ tpx, y, zq P N3 : x2 ` 4yz “ pu,

which is nonempty since p1, p, 1q P S. One can easily check that the function

fpx, y, zq “

$

’

&

’

%

px` 2z, z, y ´ x´ zq, x ă y ´ z

p2y ´ x, y, x´ y ` zq, y ´ z ă x ă 2y

px´ 2y, x´ y ` z, yq, x ą 2y

is one involution of set S whose only fixed point is p1, 1, kq. Therefore, set S must have an odd
number of elements, so every other involution must have at least one fixed point. In particular,
involution px, y, zq ÞÑ px, z, yq has at least one fixed point of the form px, y, yq meaning that x2 `

p2yq2 “ p.

The second proof uses partitions which are interesting objects themselves. From the number-
theoretic point of view, partitions are pretty hard to work with as we will see soon.

Definition 9.1. A partition of a natural number n P N is any non-increasing sequence pa1, ..., amq
of non-negative integers satisfying a1` ...`am “ n. The total number of partitions of number n P N
we denote with ppnq.

If one tries to analyse the function ppnq, he will soon realise he is in trouble. There are some
nice ways to understand this function and the most popular one is via formal series. More precisely,
the usual starting point of these investigations is the famous identity

8
ÿ

n“0

ppnqtn “
8
ź

j“1

p1´ tjq´1

where we put pp0q :“ 0. The real order of function ppnq is known, but this result is very non-trivial
to obtain.

Theorem 9.2 (Hardy-Ramanujan). ppnq „ 1
4
?

3n
eπ
?

2n{3.

23Observe that for D “ ´1 we get the ring of Gaussian integers which correspond to our quadratic form x2 ` y2,
i.e. the norm in Zris
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In his (unfortunately very short) career, Ramanujan also discovered what are now called Rogers-
Ramanujan’s identities. This are some identities involving formal series which have some very nice
combinatorial interpretations.

The algebraic importance of the function ppnq is actually quite big, since one can prove via the
Fundamental theorem for finite abelian groups the following formula.

Exercise 9.3. Prove that the number of finite abelian groups of order n “ pk11 p
k2
2 ...p

kr
r is exactly

ppk1qppk2q...ppkrq.

Anyway, let us get back to our story. When we have a partition

pa1, ..., a1
looomooon

f1

, ..., am, ..., am
loooomoooon

fm

q,

where a1 ě a2 ě ... ě am, we will denote it with paf11 ...a
fm
m q.

Why are we doing this and what does this have to do with our initial problem? Well, just
observe that a natural number is a BMS number iff it has a partition of the form paabbq. Therefore,

let us denote with Pn2 the set of all partitions of n of the form paf11 a
f2
2 q.

Lemma 9.4. If p is a prime odd number, then |Pp2 | is odd.

Proof. Let us define a map C : Pp2 Ñ Pp2 with

Cpaf11 a
f2
2 q “ ppf1 ` f2q

a2fa1´a21 q

which is well-defined since a2pf1`f2q`pa1´a2qf1 “ a1f1`a2f2 “ p. Moreover, for any paf11 a
f2
2 q P C

we have that

CpCpaf11 a
f2
2 qq “ Cppf1 ` f2q

a2fa1´a21 q “ pa2 ` a1 ´ a2q
f1af1`f2´f12 “ paf11 a

f2
2 q,

so C is an involution. Now to prove that |Pp2 | is odd, it is enough to see why C has an odd number

of fixed points. So, if paf11 a
f2
2 q is a fixed point, then we have that

paf11 a
f2
2 q “ Cpaf11 a

f2
2 q “ ppf1 ` f2q

a2aa1´a21 q

thus f1 “ a2 and a1 “ f1 ` f2. Since we also have p “ a1f1 ` a2f2 “ f1pa1 ` f2q which is prime,
it must hold f1 “ 1 (since a1 ` f2 ą 1). Finally, this implies that p “ a1 ` f2 “ 2f2 ` 1 so there is
exactly one fixed point.

Proof of Fermat’s theorem on sum of two squares. Let p “ 4k ` 1 be a prime and the idea is to
calculate the parity of |Pp2 | in a different way. Let us cook up the following set

A :“ tpaf11 a
f2
2 q P Pn2 : f1 ‰ f2 and pa1 ‰ f1 or a2 ‰ f2qu Ď Pp2

and consider the function T : AÑ A given with

T paf11 a
f2
2 q :“

#

pfa11 fa22 q, f1 ą f2

pfa22 fa11 q, f1 ă f2.

This is clearly well-defined and one can easily check that this defines an involution. Moreover, this
involution has no fixed points since a (potential) fixed point paf11 a

f2
2 q P A would have to satisfy

a1 “ f1 (impossible because how we defined A) or (a2 “ f1 and a1 “ f2) (impossible since
p “ a1f1 ` a2f2 ą 2 is a prime). Therefore, we have that |A| is even, so lemma 9.4 gives us that
|Pp2 zA| is odd.

Now, let us consider an arbitrary element paf11 a
f2
2 q P Pp2 zA. We have two distinct possibilities

(distinct because p is prime), so suppose first that f1 “ f2. In this case we have that p “ f1pa1`a2q

so f1 “ 1 (because p is prime). Therefore, we obtain a partition p “ a1`a2 and there are obviously
exactly p´1

2 these partitions (so an even number).
On the other side, suppose that a1 “ f1 and a2 “ f2. In this case we get that p “ a2

1`a
2
2, so the

number of these partitions is the same as the number of ways to present p as a sum of two squares.
Since |Pp2 zA| is odd and since partitions of the first kind we have even, we conclude that have odd
number of partitions p “ a2

1 ` a
2
2, hence we are done.
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10 Proof via formal series - only idea

It is not a great mystery that the theory of formal series is very useful in combinatorics, especially
when dealing with reccurence formulas. In the previous section we have seen a certain identity
which unravels some interesting properties of the partitions function and we will see a relatively
similar idea here. More precisely, if we denote with r2pnq the number of ways to present n as sum
of two squares, then we have the following identity

8
ÿ

n“1

r2pnqt
n “

˜

8
ÿ

k“´8

tk
2

¸2

.

After much exiting calculations (which I was too lazy to go through) one can obtain the following
equality

˜

8
ÿ

k“´8

tm
2

¸2

“ 1` 4
8
ÿ

n“0

ˆ

t4n`1

1´ t4n`1
´

t4n`3

1´ t4n`3

˙

.

I turns out that the last two series have a very nice number-theoretic interpretation which gives us
the following (surprisingly strong) theorem.

Theorem 10.1 (Jacobi’s24 theorem). If n is a natural number and we denote with d1pnq and d3pnq
numbers of its divisors of n which are congruent 1 and 3 modulo 4, then we have that r2pnq “
4pd1pnq ´ d3pnq.

Now one can very easily deduce from this even the Sum of two squares theorem which we will
leave to the reader.
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