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Motivation

Consider a wireless network on a compact communication area W ⊂ Rd .
Users situated in W randomly, base station o ∈ W .
Idea: assume that each user sends 1 message to the base station.

Messages travel in hops, possibly using other users as relays. Message
trajectories → straight lines between consecutive steps.
All users can take at most kmax hops, for some kmax ∈ N fixed.
A priori, message trajectories are distributed in a uniform way. All
trajectories with 1 ≤ k ≤ kmax hops are allowed, even crazy ones.
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Motivation

Consider a wireless network on a compact communication area W ⊂ Rd .
Users situated in W randomly, base station o ∈ W .
Idea: assume that each user sends 1 message to the base station.

Messages travel in hops, possibly using other users as relays. Message
trajectories → straight lines between consecutive steps.

All users can take at most kmax hops, for some kmax ∈ N fixed.

A priori, message trajectories are distributed in a uniform way. All
trajectories with 1 ≤ k ≤ kmax hops are allowed, even crazy ones.
We weight this uniform distribution by 2 exponential penalty terms,
preferring low interference and little congestion → Gibbsian trajectory
distribution.

low interference: high signal-to-interference ratios and not too many hops,
little congestion: equal distribution of incoming hops among relays.

“Common welfare" model, interplay between entropy (probability) and
energy (interference+congestion).

Question: how is the typical behaviour of trajectories (number of hops,
length of a hop, shape of a trajectory) in the limit of high density of users?
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Distribution of users: Poisson point process

Usual assumption for wireless networks: users form a Poisson point process.

Definition
Let W ⊆ Rd be bounded and let µ be a finite measure on W . A random
collection of points X = {Xi}i∈I of W is a Poisson point process (PPP) in W
with intensity measure µ, if

(i) ∀A ⊆ W measurable, #(X ∩ A) is Poisson(µ(A))-
distributed, i.e., P(#(X ∩ A) = n) = µ(A)n

n!
e−µ(A), ∀n ∈ N0,

(ii) ∀k ∈ N, for any pairwise disjoint sets A1, . . . ,Ak ⊆ W , the random
variables {#(X ∩ Ai )}ki=1 are independent.
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Our Gibbsian model

Communication area, users, base station

W ⊂ Rd compact communication area, Leb(W ) > 0, o ∈ W base station
(origin of Rd).

µ finite, absolutely continuous, nonzero measure on W .

Users: Xλ = {Xi}N(λ)
i=1 Poisson point process with intensity λµ.

We assume that (Xλ)λ>0 is such that the empirical measure of users

Lλ =
1
λ

N(λ)∑
i=1

δXi

tends to µ almost surely. This holds e.g. if λ 7→ Xλ is increasing.
(For x ∈ Rd , δx is a measure on Rd , defined via δx(A) = 1 if x ∈ A and
δx(A) = 0 otherwise.)
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Our Gibbsian model

Message trajectories

Users: Xλ = {Xi}N(λ)
i=1 Poisson point process with intensity λµ.

Fix kmax ∈ N. Given the users Xλ, the trajectory of the message Xi → o is
random, with a random number of hops in {1, . . . , kmax}. It has the form

s i = (ki (s
i )︸ ︷︷ ︸

#hops

; s i0 = Xi︸ ︷︷ ︸
transmitter

, s i1 ∈ Xλ, . . . , s iki (s i )−1 ∈ Xλ︸ ︷︷ ︸
relays

, s iki (s i ) = o︸ ︷︷ ︸
receiver

)
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Our Gibbsian model

Weighting interference

We choose a path-loss function ℓ : [0,∞) → (0,∞): continuous,
monotone decreasing, describes propagation of signal strength over
distance. E.g.: ℓ(r) = min{1, r−α}, α > 0 – Hertzian propagation.

Signal-to-interference ratio (SIR) of a transmission Xi ∈ Xλ → x ∈ W :

SIRλ(Xi , x , Xλ) =
ℓ(|Xi − x |)

1
λ

∑N(λ)
j=1 ℓ(|Xj − x |)

.

The denominator is called the interference at x (rescaled by 1/λ).

We define a SIR weight term for trajectory collections s = (s i )
N(λ)
i=1 :

S(s) =

N(λ)∑
i=1

ki (s
i )∑

l=1

SIR−1
λ (s il−1, s

i
l ,X

λ).

→ penalty for each step, larger if the SIR is worse (smaller).
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Our Gibbsian model

Weighting congestion

For a trajectory collection s, the number of incoming messages at the user

(relay) Xi is mi (s) =
∑N(λ)

j=1
∑kj (s

j )−1
l=1 1{s jl = Xi}.

We define another weight term for the congestion:

M(s) =

N(λ)∑
i=1

mi (s)(mi (s)− 1).

→ number of ordered pairs of incoming messages at all relays.
Large penalty for uneven distributions of incoming messages among relays.
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The Gibbs distribution

Definition of the Gibbs distribution
For the intensity λ > 0 and two parameters γ > 0, β ≥ 0, given the users
Xλ = (Xi )

N(λ)
i=1 , the message trajectories are chosen according to the following

Gibbs distribution:

Pγ,β

λ,Xλ(s) =
1

Zγ,β
λ (Xλ)

1

N(λ)
∑N(λ)

i=1 (ki (s
i )−1)

exp(−γS(s)− βM(s)).

Here Zγ,β
λ (Xλ) is the normalizing constant, called partition function, which

makes Pγ,β

λ,Xλ a probability measure:

Zγ,β
λ (Xλ) =

∑
r

1

N(λ)
∑N(λ)

i=1 (ki (r
i )−1)

exp(−γS(r)− βM(r)).

Plan to analyze the high-density limit λ → ∞
Given (Xλ)λ>0, determine the limiting free energy limλ→∞

1
λ

logZγ,β
λ (Xλ).

The free energy is expected to be given by a variational formula →
minimizer(s) give information about the limiting distribution of trajectories.
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First approach to the limiting free energy

Idea: use the empirical measures of message trajectories of given lengths k.
For k = 1, . . . , kmax and for a trajectory collection s = (s i )

N(λ)
i=1 , we put

Rλ,k(s) =
1
λ

N(λ)∑
i=1

δ(s i0,...,s ik−1)
1{ki (s i ) = k}.

Properties

For k = 1, . . . , kmax and for all s, Rλ,k(s) is a random element of the set
M(W k) of finite measures on W k = W {0,1,...,k−1}.

The partition function Zγ,β
λ (Xλ) is a function of these measures.

Each user sends 1 message to o ⇒ the 0th marginals π0Rλ,k(s) of the
Rλ,k(s)’s sum up to the empirical measure of users Lλ:

kmax∑
k=1

π0Rλ,k(s) =
1
λ

N(λ)∑
i=1

δXi = Lλ.

Assumed: Lλ ⇒ µ, almost surely. Thus, along a subsequence, the Rλ,k(·)’s
converge to some Σ = (νk)

kmax
k=1 , νk ∈ M(W k), with

∑kmax
k=1 π0νk = µ.

The SIR term S(·) depends on each Rλ,k(·) in a continuous, linear way.
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First approach to the limiting free energy

Idea: use the empirical measures of message trajectories of given lengths k.

Rλ,k(s) =
1
λ

N(λ)∑
i=1

δ(s i0,...,s ik−1)
1{ki (s i ) = k}.

Properties

For k = 1, . . . , kmax and for all s, Rλ,k(s) is a random element of the set
M(W k) of finite measures on W k = W {0,1,...,k−1}.

The partition function Zγ,β
λ (Xλ) is a function of these measures.

Each user sends 1 message to o ⇒ the 0th marginals π0Rλ,k(s) of the
Rλ,k(s)’s sum up to the empirical measure of users Lλ:

kmax∑
k=1

π0Rλ,k(s) =
1
λ

N(λ)∑
i=1

δXi = Lλ.

Assumed: Lλ ⇒ µ, almost surely. Thus, along a subsequence, the Rλ,k(·)’s
converge to some Σ = (νk)

kmax
k=1 , νk ∈ M(W k), with

∑kmax
k=1 π0νk = µ.

The SIR term S(·) depends on each Rλ,k(·) in a continuous, linear way.
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The congestion term makes trouble

Problem: the congestion term depends discontinuously on Rλ,k(·)’s as λ → ∞.
−→ No way to express its limit in the terms of the limiting measures (νk)

kmax
k=1 .

Solution: we introduce the empirical measures of users receiving given numbers
of incoming messages w.r.t. the trajectory family s:

Pλ,m(s) =
1
λ

N(λ)∑
i=1

δXi1{mi (s) = m}, m ∈ N0. (1)

Properties

Each Pλ,m(s) is a random element of M(W ).

The congestion term M(·) depends linearly on this family of measures:

M(s) =

N(λ)∑
i=1

mi (s)(mi (s)− 1) = λ
∞∑

m=0

m(m − 1)Pλ,m(s)(W ).

Since each user receives exactly m incoming messages for precisely one m,∑∞
m=0 Pλ,m(s) = Lλ, ∀s, λ.

So (Pλ,m(·))m also converge along a subsequence to some Ξ = (µm)
∞
m=0,

where µm ∈ M(W ), with
∑∞

m=0 µm = µ.
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The congestion term makes trouble

Problem: the congestion term depends discontinuously on Rλ,k(·)’s as λ → ∞.
−→ No way to express its limit in the terms of the limiting measures (νk)

kmax
k=1 .

Solution: we introduce the empirical measures of users receiving given numbers
of incoming messages w.r.t. the trajectory family s:

Pλ,m(s) =
1
λ

N(λ)∑
i=1

δXi1{mi (s) = m}, m ∈ N0. (1)

Properties

Each Pλ,m(s) is a random element of M(W ).

The congestion term M(·) depends linearly on this family of measures:

M(s) =

N(λ)∑
i=1

mi (s)(mi (s)− 1) = λ

∞∑
m=0

m(m − 1)Pλ,m(s)(W ).

Since each user receives exactly m incoming messages for precisely one m,∑∞
m=0 Pλ,m(s) = Lλ, ∀s, λ.

So (Pλ,m(·))m also converge along a subsequence to some Ξ = (µm)
∞
m=0,

where µm ∈ M(W ), with
∑∞

m=0 µm = µ.
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Properties of the limiting measures

Form of limiting measures: Ψ = (Σ,Ξ) = ((νk)
kmax
k=1 , (µm)m∈N0):

νk ∈ M(W k), k = 1, . . . , kmax: limiting distribution of k-hop trajectories,

µm ∈ M(W ), n ∈ N0: limiting distribution of users (relays) receiving
precisely m incoming messages,

Constraints

(i)
∑kmax

k=1 π0νk = µ because each user sends out 1 message to o,

(ii)
∑∞

m=0 µm = µ because each user receives m incoming messages for exactly
one m,

(iii)
∑kmax

k=1
∑k−1

l=1 πlνk =
∑∞

m=0 mµm: the total number of relaying hops of all
trajectories = the total number of incoming messages at all relays.
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The limiting free energy

Theorem
We have for β ≥ 0, γ > 0, almost surely w.r.t. the users (Xλ)λ>0,

lim
λ→∞

1
λ

logZγ,β
λ (Xλ) = − inf

Ψ satisfying (i),(ii),(iii)
(I(Ψ) + γS(Ψ) + βM(Ψ)).

Ψ = (Σ,Ξ) = ((νk)
kmax
k=1 , (µm)

∞
m=0) satisfying (i)–(iii).

S(Ψ) = S(Σ): a limiting SIR term depending only on the νk ’s.

M(Ψ) = M(Ξ): a limiting congestion term depending only on the µm’s.

I(Ψ): an entropy term → logarithmic rate of combinatorial terms
expressing counting complexity. Involves both Σ and Ξ.

(Precise expressions for S,M, I are on the last slide.)

We’ll see: the variational formula has at least 1 minimizer.
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Analysis of the minimizers

Strategy: show that a minimizer exists + all minimizers are positive wherever µ
is positive → identify minimizers via deriving the Euler–Lagrange equations.

Case β > 0, γ > 0

Uniqueness is unclear. All minimizers are given in the following implicit way:
for x , x0, . . . , xk−1 ∈ W ,

νk(dx0, . . . , dxk−1) = µ(dx0)A(x0)
k−1∏
l=1

C(xl)M(dxl)e
−γ

∫
W ℓ(|z−xl |)µ(dxl )

ℓ(|xl−1−xl |) ,

µm(dx) = µ(dx)B(x) (C(x)µ(W ))−m

m!
e−βm(m−1).

Here A,B,C are positive functions s.t. (i),(ii),(iii) hold,
M =

∑kmax
k=1

∑k−1
l=1 πlνk =

∑∞
m=0 mµm.

Case β = 0, γ > 0

These equations remain true, but they simplify + uniqueness holds. Can write

νk(dx0, . . . , dxk−1) = µ(dx0)A(x0)
k−1∏
l=1

µ(dxl)
µ(W )

e
−γ

∫
W ℓ(|z−xl |)µ(dxl )

ℓ(|xl−1−xl |) .
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Qualitative properties of the network

Law of large numbers for the empirical measures of trajectories:
if γ > 0 and β = 0, the empirical measures of trajectories (Rλ,k((S

i )
N(λ)
i=1 )kmax

k=1
converge to the unique minimizer (νk)kmax

k=1 of the variational formula.
This follows from a large deviation principle for these empirical measures.

The minimizer is amenable for analytical investigations → gives information
about the network for high user densities λ < ∞.
νk : limiting distribution of k-hop trajectories.

András Tóbiás (TU)
A Gibbsian model for message routing



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Qualitative properties of the network

Law of large numbers for the empirical measures of trajectories:
if γ > 0 and β = 0, the empirical measures of trajectories (Rλ,k((S

i )
N(λ)
i=1 )kmax

k=1
converge to the unique minimizer (νk)kmax

k=1 of the variational formula.
νk : limiting distribution of k-hop trajectories.

Example: one-hop trajectories in a one-dimensional setting

Density of 1-hop trajectories ν1(dx)/µ(dx) for γ = 0, 0.001, 0.01, 0.1, 1,∞, for
W = [−5, 5] ⊂ R, µ = Leb|W , o = 0, ℓ(r) = min{1, r−4}, kmax = 2.
For γ close to 0, ν1 is almost identically 1/2.
For γ large enough (already for γ = 1!), ν1(dx0)/µ(dx0) is close to the
indicator function of the 1-hop path being better w.r.t. SIR penalization than
any of the 2-hop paths from x0 to o.
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Qualitative properties of the network

Law of large numbers for the empirical measures of trajectories:
if γ > 0 and β = 0, the empirical measures of trajectories (Rλ,k((S

i )
N(λ)
i=1 )kmax

k=1
converge to the unique minimizer (νk)kmax

k=1 of the variational formula.
νk : limiting distribution of k-hop trajectories.

1. Typical number of hops in a large-distance limit

Consider larger and larger balls W with users distributed according to Lebesgue
measure µ, kmax large, transmitter x0 far out.
Under suitable assumptions on ℓ, the typical length of a hop tends to infinity!
E.g., if ℓ(r) = min{1, r−α}, α > d , then x0 → o typically takes
k(|x0|) ≍ |x0|

log1/α |x0|
hops of equal length ≍ log1/α |x0|.

The optimal path follows a straight line with equal-sized hops, macroscopic
deviations from it get exponentially unlikely in this limit.
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Qualitative properties of the network

Law of large numbers for the empirical measures of trajectories:
if γ > 0 and β = 0, the empirical measures of trajectories (Rλ,k((S

i )
N(λ)
i=1 )kmax

k=1
converge to the unique minimizer (νk)kmax

k=1 of the variational formula.
νk : limiting distribution of k-hop trajectories.

2. Convergence to the straight line for fixed W and large γ

Fix kmax and the communication area W = Br (o), let µ be rotationally
symmetric and ℓ strictly monotone increasing. E.g.: ℓ(r) = (1 + r)−α.
Then as γ → ∞, we observe convergence to the straight line:
for any ε > 0, ∀x0 ∈ W , the probability of choosing trajectories x0 → o with
≥ 1 hop ≥ ε away from the straight line decays exponentially fast.
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Thank you for your attention!

W. König and A. Tóbiás: A Gibbsian model for highly dense multihop
networks. arXiv:1704.03499 (2017) – for the general case (penalizing
interference+congestion).

W. König and A. Tóbiás: Routeing properties in a Gibbsian model for
highly dense multihop networks. arXiv:1801.04985 (2017/18) – for the
applications: qualitative properties of the network, motivation,
game-theoretic properties, simulation results.

András Tóbiás (TU)
A Gibbsian model for message routing



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The limiting entropy, SIR and congestion terms

For Ψ = ((νk)
kmax
k=1 , (µm)

∞
m=0), the entropy term I(Ψ) is given as

I(Ψ) =

kmax∑
k=1

∫
W k

νk(dx0, . . . , dxk−1) log
dνk

dµ⊗ k
(x0, . . . , xk−1)

+
∞∑

m=0

∫
W

µm(dx) log
dµm

dµcm
(x)−

∫
W

M(dx) log
dM
dµ

(x)− 1
e
,

where cm are the weights of a Poisson( 1
eµ(W )

)-distribution.
The expression is to be understood as +∞ if some of the Radon-Nikodym
derivatives doesn’t exist, and we use the convention 0 log 0 = 0 log 0

0 = 0.
The limiting SIR term is

S(Ψ) =

kmax∑
k=1

k∑
l=1

∫
W k

νk(dx0, . . . , dxk−1)

∫
W

ℓ(|z − xl |)µ(dz)
ℓ(|xl−1 − xl |)

∈ [0,∞).

The limiting congestion term is

M(Ψ) =
∞∑

m=0

m(m − 1)µm(W ) ∈ [0,∞].
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