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Motivation

Consider a wireless network on a compact communication area W C RY.
Users situated in W randomly, base station o € W.
Idea: assume that each user sends 1 message to the base station.
m Messages travel in hops, possibly using other users as relays. Message
trajectories — straight lines between consecutive steps.
m All users can take at most kmax hops, for some kmax € N fixed.
m A priori, message trajectories are distributed in a uniform way. All
trajectories with 1 < k < kmax hops are allowed, even crazy ones.
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Motivation

Consider a wireless network on a compact communication area W C RY.
Users situated in W randomly, base station o € W.
Idea: assume that each user sends 1 message to the base station.

m Messages travel in hops, possibly using other users as relays. Message
trajectories — straight lines between consecutive steps.

m All users can take at most kmax hops, for some kmax € N fixed.
m A priori, message trajectories are distributed in a uniform way. All
trajectories with 1 < k < kmax hops are allowed, even crazy ones.

m We weight this uniform distribution by 2 exponential penalty terms,
preferring low interference and little congestion — Gibbsian trajectory
distribution.

m low interference: high signal-to-interference ratios and not too many hops,
m little congestion: equal distribution of incoming hops among relays.

m “Common welfare" model, interplay between entropy (probability) and
energy (interference+congestion).

m Question: how is the typical behaviour of trajectories (number of hops,
length of a hop, shape of a trajectory) in the limit of high density of users?
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Distribution of users: Poisson point process

Usual assumption for wireless networks: users form a Poisson point process.

Let W C R? be bounded and let 1 be a finite measure on W. A random
collection of points X = {Xj}ic; of W is a Poisson point process (PPP) in W
with intensity measure p, if
(i) YA C W measurable, #(X N A) is Poisson((A))-
distributed, i.e., P(#(X NA) =n) = #e’“(*‘), Vn € No,
(i) Yk € N, for any pairwise disjoint sets Az, ..., Ax C W, the random
variables {#(X N A;)}%_; are independent.
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Our Gibbsian model

Communication area, users, base station

m W C R? compact communication area, Leb(W) > 0, o € W base station
(origin of RY).

m 4 finite, absolutely continuous, nonzero measure on W.

m Users: X* = {X,-};V:(IA) Poisson point process with intensity Au.

m We assume that (X*)xso is such that the empirical measure of users

tends to y almost surely. This holds e.g. if A — X* is increasing.
(For x € R?, 6, is a measure on R?, defined via §,(A) = 1 if x € A and
0x(A) = 0 otherwise.)




Our Gibbsian model

Message trajectories

m Users: X* = {X,-},I.V:(f) Poisson point process with intensity Au.

m Fix kmax € N. Given the users X*, the trajectory of the message X; — o is

random, with a random number of hops in {1,..., kmax}. It has the form
s = (ki(s'); so=Xi,si € X*,..., SL,-(sf)—l e X, SL,-(s") =0)
N N—— \ ,

#thops transmitter relays receiver
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Our Gibbsian model

Weighting interference

m We choose a path-loss function £: [0, 00) — (0, 00): continuous,
monotone decreasing, describes propagation of signal strength over
distance. E.g.: 4(r) = min{1,r—“}, @ > 0 — Hertzian propagation.

m Signal-to-interference ratio (SIR) of a transmission X; € X* — x € W:

SIRA(X;, x, X*) =~ (k))( x)
5 (1 X; — x[)

The denominator is called the interference at x (rescaled by 1/X).

m We define a SIR weight term for trajectory collections s = (si),'-\lz({\):

N Ki(s'
ZZ SIR '(s/_1, s/, X™).

— penalty for each step, larger if the SIR is worse (smaller).
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Our Gibbsian model

Weighting congestion

m For a trajectory collection s, the number of incoming messages at the user
q ki(s/)—1 .
(relay) Xi is mi(s) = E,N:(i\) Z,’:(IS) 1{s/ = Xi}.
m We define another weight term for the congestion:

N(X)

M(s) = Y mi(s)(mi(s) — 1).
i=1
— number of ordered pairs of incoming messages at all relays.
Large penalty for uneven distributions of incoming messages among relays.
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The Gibbs distribution

Definition of the Gibbs distribution

For the |nten5|ty A > 0 and two parameters v > 0, 5 > 0, given the users
(X) e ), the message trajectories are chosen according to the following
Glbbs distribution:

~,8 1 1 . .
P ) = Z0y o P78 ()~ i)

Here Z° ﬁ(X/\) is the normalizing constant, called partition function, which
makes P’Y XA 2 probability measure:

TR(XM) = S S xp(— r)— r
B0y = S, P80 A

Plan to analyze the high-density limit A — oo

Given (X )a>o0, determine the limiting free energy limy_y o0 5 log zy ﬁ(X’\)
The free energy is expected to be given by a variational formula —
minimizer(s) give information about the limiting distribution of trajectories.
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First approach to the limiting free energy

Idea: use the empirical measures of message trajectories of %iven lengths k.

For k = 1,..., kmax and for a trajectory collection s = (s")?’:f), we put

N(X)
1 i
Rai(s) = 5 D Fss pki(s)) = K}
i=1
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First approach to the limiting free energy

Idea: use the empirical measures of message trajectories of given lengths k.
1 N(A)
Rai(s) = 5 D Sss pLki(s)) = K}
i=1

m For k =1,..., kmax and for all s, Ry «(s) is a random element of the set
M(W*) of finite measures on W = Wi0:1k=1}

m The partition function Z;’*B(XA) is a function of these measures.

m Each user sends 1 message to o = the Oth marginals moRx «(s) of the
R k(s)'s sum up to the empirical measure of users Ly:

kmax

1 N(X)
; moRxk(s) = X ; Ox; = L.

m Assumed: Ly = p, almost surely. Thus, along a subsequence, the Ry «(-)'s
converge to some ¥ = (k)% vk € M(W*), with S\ mouy = pu.

m The SIR term S(-) depends on each Ry «(-) in a continuous, linear way.
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The congestion term makes trouble

Problem: the congestion term depends discontinuously on Ry «(-)'s as A — oo.
— No way to express its limit in the terms of the limiting measures (z/k)’,j';;".
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The congestion term makes trouble

Problem: the congestion term depends discontinuously on Ry «(-)'s as A — oo.

kmax

— No way to express its limit in the terms of the limiting measures (vy),m3x.
Solution: we introduce the empirical measures of users receiving given numbers
of incoming messages w.r.t. the trajectory family s:
1 M
Px.m(s) = Z ox,1{mi(s) = m}, m e No. (1)

Properties
m Each P, (s) is a random element of M(W).
m The congestion term 91(-) depends linearly on this family of measures:

§|

N(X) oo
M(s) = Z mi(s)(mi(s) = 1) = XY m(m — 1)Px m(s)(W).

m Since each user receives exactly m incoming messages for precisely one m,
Yo o Pam(s) =Lx, Vs, A

m So (P, m(-))m also converge along a subsequence to some = = (um)m=o,
where p, € M(W), with > 0 fum = p.
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Properties of the limiting measures

Form of limiting measures: ¥ = (X,=) = ((Z/k)i"_:?, (pm)meng ):
B v € M(W¥), k=1,..., kmax: limiting distribution of k-hop trajectories,

® um € M(W), n € No: limiting distribution of users (relays) receiving
precisely m incoming messages,

(i) SSfmax mouy = u because each user sends out 1 message to o,

(if) >, wm = p because each user receives m incoming messages for exactly
one m,

(iii) Sotmex Sy = 3200 o mpum: the total number of relaying hops of all
trajectories = the total number of incoming messages at all relays.
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The limiting free energy

We have for 8 > 0, v > 0, almost surely w.r.t. the users (X)‘)A>o,

AIme % log Z;,B(XA) Ty satisfyhigf(i),(ﬁ),(iii)(I(w) AS(V) M)
B W = (5,2) = ((v)fmg, (m)3o) satisfying (i)(ii).
m S(V) = S(X): a limiting SIR term depending only on the v's.
m M(W) = M(Z): a limiting congestion term depending only on the um's.
m I(V): an entropy term — logarithmic rate of combinatorial terms
expressing counting complexity. Involves both ¥ and =.
m (Precise expressions for S, M, I are on the last slide.)

m We'll see: the variational formula has at least 1 minimizer.
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Analysis of the minimizers

Strategy: show that a minimizer exists + all minimizers are positive wherever p
is positive — identify minimizers via deriving the Euler-Lagrange equations.

Case 6 >0,7>0

Uniqueness is unclear. All minimizers are given in the following implicit way:
for x, x0,...,xk—1 € W,

Jw z—x 1) u(dx)

k—1 _
Vi(dxo, - - ., dxi—1) = p(dxo)A(xo) [T COx)M(dxi)e ' TPi—a—xD
=1

fim(dx) = pa(dx)B(x) EM T o —pm(m—1)

Here A, B, C are positive functions s.t. (i),(ii),(iii) hold,
M= Sl S e = S5 o mpa.

Case 5=0,v>0

|
b)

These equations remain true, but they simplify + uniqueness holds. Can write

£(1z—x;[)p(dx))

I/k(dXo, e ka—l) (dXo XO H /L(dX’ é(IX/ 1—x1)
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Qualitative properties of the network

Law of large numbers for the empirical measures of trajectories:

if v > 0 and 8 = 0, the empirical measures of trajectories (RA,k((S")II.V:(IA))i';T‘
converge to the unique minimizer (14){™$* of the variational formula.

This follows from a large deviation principle for these empirical measures.

The minimizer is amenable for analytical investigations — gives information

about the network for high user densities \ < oo.
vk: limiting distribution of k-hop trajectories.
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Qualitative properties of the network

Law of large numbers for the empirical measures of trajectories:

if ¥ > 0 and B = 0, the empirical measures of trajectories (R x((S')i=;
converge to the unique minimizer (v)fms* of the variational formula.
vk: limiting distribution of k-hop trajectories.
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Example: one-hop trajectories in a one-dimensional setting

Density of 1-hop trajectories v1(dx)/u(dx) for v = 0,0.001,0.01,0.1,1, oo, for
W = [-5,5] C R, u = Leb|w, 0 =0, £(r) = min{1, r=*}, kmax = 2.

For « close to 0, v1 is almost identically 1/2.

For v large enough (already for v = 1), v1(dxo)/p(dxo) is close to the
indicator function of the 1-hop path being better w.r.t. SIR penalization than
any of the 2-hop paths from xg to o.
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Qualitative properties of the network

Law of large numbers for the empirical measures of trajectories:
if v > 0 and 3 = 0, the empirical measures of trajectories (R)\,k((S");V:(IA))ﬁ’:i"
converge to the unique minimizer (14){™%* of the variational formula.

vk: limiting distribution of k-hop trajectories.

1. Typical number of hops in a large-distance limit

Consider larger and larger balls W with users distributed according to Lebesgue
measure i, kmax large, transmitter xo far out.

Under suitable assumptions on ¢, the typical length of a hop tends to infinity!
E.g., if £(r) = min{1,r~*}, a > d, then xo — o typically takes

k(|xo|) < % hops of equal length = log"/ |xo|.

The optimal path follows a straight line with equal-sized hops, macroscopic
deviations from it get exponentially unlikely in this limit.
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Qualitative properties of the network

Law of large numbers for the empirical measures of trajectories:

if v > 0 and 8 = 0, the empirical measures of trajectories (Rx «((S' )N(A Jpmax
converge to the unique minimizer (14){™%* of the variational formula.

vk: limiting distribution of k-hop trajectories.

2. Convergence to the straight line for fixed W and large ~

Fix kmax and the communication area W = B,(0), let i be rotationally
symmetric and £ strictly monotone increasing. E.g.: £(r) = (1 +r)~*.

Then as 7 — oo, we observe convergence to the straight line:

for any € > 0, Vxo € W, the probability of choosing trajectories xo — o with
> 1 hop > ¢ away from the straight line decays exponentially fast.
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Thank you for your attention!

m W. Konig and A. Tébias: A Gibbsian model for highly dense multihop
networks. arXiv:1704.03499 (2017) — for the general case (penalizing
interference+congestion).

m W. Kénig and A. Tébias: Routeing properties in a Gibbsian model for
highly dense multihop networks. arXiv:1801.04985 (2017/18) — for the
applications: qualitative properties of the network, motivation,
game-theoretic properties, simulation results.
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The limiting entropy, SIR and congestion terms

For W = ((vk)fm3*, (1m)isso), the entropy term I(W) is given as
kmax d]j
k
(V) = Z /Wk vk(dxo, . .., dxk—1) log W(Xg, ey Xk—1)

+Z/ Lim(dx) Iog “’" / M(dx)log—( ) —

where cr, are the weights of a Poisson( 775 ) distribution.

The expression is to be understood as +oo |f some of the Radon-Nikodym
derivatives doesn't exist, and we use the convention Olog0 =0 Iog% =0.
The limiting SIR term is

Kmax K Z— X z
S(¥) = ZZ/ Vi(dxo, - ., dxi l)fo(‘ Duldz) o oy

i (Ix-1 = xil)

The limiting congestion term is

M(V) = m(m — 1)um(W) € [0, o0].
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