(One Small Aspect of) Convexity and Curvature

Stephen Lynch

FU Berlin

February 23, 2018

Let $\Sigma \subset \mathbb{R}^{n+1}$ be a smooth embedded copy of

$$S^n := \{x \in \mathbb{R}^{n+1} : |x| = 1\}.$$

Let $\Sigma \subset \mathbb{R}^{n+1}$ be a smooth embedded copy of

$$S^n := \{x \in \mathbb{R}^{n+1} : |x| = 1\}.$$

• Jordan-Brouwer tells us that Σ bounds a domain $\Omega \subset \mathbb{R}^{n+1}$

Let $\Sigma \subset \mathbb{R}^{n+1}$ be a smooth embedded copy of

$$S^n := \{x \in \mathbb{R}^{n+1} : |x| = 1\}.$$

- Jordan-Brouwer tells us that Σ bounds a domain $\Omega \subset \mathbb{R}^{n+1}$
- Ω is convex if for every x, y ∈ Ω, the straight line connecting x and y remains in Ω

• Let $\nu: \Sigma \to S^n$ be a smooth normal vectorfield on Σ

- Let $\nu: \Sigma \to S^n$ be a smooth normal vectorfield on Σ
- $D\nu$ completely describes how Σ is curving in the ambient space

- Let $\nu: \Sigma \to S^n$ be a smooth normal vectorfield on Σ
- $D\nu$ completely describes how Σ is curving in the ambient space
- It is convenient to define an operator A (the second fundamental form) by

$$egin{aligned} A: \ T\Sigma imes T\Sigma o \mathbb{R} \ & (X,Y) \mapsto \langle D_X
u,Y
angle \end{aligned}$$

- Let $\nu: \Sigma \to S^n$ be a smooth normal vectorfield on Σ
- $D\nu$ completely describes how Σ is curving in the ambient space
- It is convenient to define an operator A (the second fundamental form) by

$$egin{aligned} A: \ T\Sigma imes T\Sigma o \mathbb{R} \ & (X,Y) \mapsto \langle D_X
u,Y
angle \end{aligned}$$

• Σ is convex if and only if $A \ge 0$

- Let $\nu: \Sigma \to S^n$ be a smooth normal vectorfield on Σ
- $D\nu$ completely describes how Σ is curving in the ambient space
- It is convenient to define an operator A (the second fundamental form) by

$$egin{aligned} A: \ T\Sigma imes T\Sigma o \mathbb{R} \ & (X,Y) \mapsto \langle D_X
u,Y
angle \end{aligned}$$

• Σ is convex if and only if $A \ge 0$

This is useful for doing analysis (picture A solving some PDE).

Suppose now that Σ is instead an embedded copy of S^n in \mathbb{R}^{n+k} .

Suppose now that Σ is instead an embedded copy of S^n in \mathbb{R}^{n+k} .

The normal space

$$N\Sigma := \{V \in \mathbb{R}^{n+k} : \langle V, X \rangle = 0 \ \forall X \in T\Sigma \}$$

is now k-dimensional.

Suppose now that Σ is instead an embedded copy of S^n in \mathbb{R}^{n+k} .

The normal space

$$N\Sigma := \{V \in \mathbb{R}^{n+k} : \langle V, X \rangle = 0 \ \forall X \in T\Sigma \}$$

is now k-dimensional.

If $\{\nu_{\alpha}\}$ is an orthonormal basis for $N\Sigma$, we define

$$egin{array}{lll} egin{array}{lll} A_lpha : T\Sigma imes T\Sigma
ightarrow \mathbb{R} \ & (X,Y) \mapsto \langle D_X
u_lpha, Y
angle \end{array}$$

The k maps $\{A_{\alpha}\}$ are the components of the vector-valued second fundamental form

 $A: T\Sigma \times T\Sigma \to N\Sigma.$

The *k* maps $\{A_{\alpha}\}$ are the components of the vector-valued second fundamental form

$$A: T\Sigma \times T\Sigma \to N\Sigma.$$

Convexity no longer makes sense, but maybe we can place a (nice) condition on A which recovers some of its properties...

Some basis invariant objects:

$$\blacktriangleright |A|^2 := \sum_{\alpha} |A_{\alpha}|^2 = \sum_{\alpha} \operatorname{tr}(A_{\alpha}^{T} A_{\alpha})$$

Some basis invariant objects:

$$|A|^2 := \sum_{\alpha} |A_{\alpha}|^2 = \sum_{\alpha} \operatorname{tr}(A_{\alpha}^T A_{\alpha})$$

$$\operatorname{tr} A = \sum_{\alpha} \operatorname{tr} A_{\alpha}$$

Some basis invariant objects:

$$|A|^2 := \sum_{\alpha} |A_{\alpha}|^2 = \sum_{\alpha} \operatorname{tr}(A_{\alpha}^T A_{\alpha})$$

$$\operatorname{tr} A = \sum_{\alpha} \operatorname{tr} A_{\alpha}$$

$$|\operatorname{tr} A|^2$$

Some basis invariant objects:

$$|A|^2 := \sum_{\alpha} |A_{\alpha}|^2 = \sum_{\alpha} \operatorname{tr}(A_{\alpha}^T A_{\alpha})$$

$$\operatorname{tr} A = \sum_{\alpha} \operatorname{tr} A_{\alpha}$$

$$|\operatorname{tr} A|^2$$

Ansatz for the new condition:

$$|A|^2 \leq c_n |\operatorname{tr} A|^2.$$

▶ $|A| \le c_n |\operatorname{tr} A|^2$ says that

$$\sum_{i} \lambda_i^2 \leq c_n \left(\sum_{i} \lambda_i\right)^2.$$

• $|A| \leq c_n |\operatorname{tr} A|^2$ says that

$$\sum_{i} \lambda_i^2 \leq c_n \left(\sum_{i} \lambda_i\right)^2.$$

• For $c_n = \frac{1}{n}$, Young's inequality implies

$$\lambda_1 = \cdots = \lambda_n,$$

in which case tr $A \ge 0 \Rightarrow A \ge 0$.

• $|A| \leq c_n |\operatorname{tr} A|^2$ says that

$$\sum_{i} \lambda_i^2 \leq c_n \left(\sum_{i} \lambda_i\right)^2.$$

• For $c_n = \frac{1}{n}$, Young's inequality implies

$$\lambda_1 = \cdots = \lambda_n,$$

in which case tr $A \ge 0 \Rightarrow A \ge 0$.

• tr $A \ge \Rightarrow A \ge 0$ still holds if $c_n \le \frac{1}{n-1}$ (sharp).

What can we say about the condition

$$|A|^2 \leq \frac{1}{n-1} |\operatorname{tr} A|^2$$

for larger values of *k*? What properties does it share with convexity?

What can we say about the condition

$$|A|^2 \leq \frac{1}{n-1} |\operatorname{tr} A|^2$$

for larger values of k? What properties does it share with convexity?

For k = 1 and n = 2, $A \ge 0$ implies that the Gauss curvature of Σ (given by det A) is nonnegative.

What can we say about the condition

$$|A|^2 \leq \frac{1}{n-1} |\operatorname{tr} A|^2$$

for larger values of k? What properties does it share with convexity?

For k = 1 and n = 2, $A \ge 0$ implies that the Gauss curvature of Σ (given by det A) is nonnegative.

The Gauss curvature is intrinsic (depends only on the metric structure of Σ) and vanishes if and only if Σ is locally isometric to \mathbb{R}^2 .

For $n \ge 2$, the Riemannian curvature operator

$$\mathcal{R}:\wedge^2 T\Sigma \times \wedge^2 T\Sigma \to \mathbb{R}$$

measures intrinsic curvature (vanishes if and only if Σ is locally isometric to \mathbb{R}^n).

For $n \ge 2$, the Riemannian curvature operator

$$\mathcal{R}:\wedge^2 T\Sigma \times \wedge^2 T\Sigma \to \mathbb{R}$$

measures intrinsic curvature (vanishes if and only if Σ is locally isometric to \mathbb{R}^n).

For k = 1 and $n \ge 2$, $A \ge 0$ if and only if $\mathcal{R} \ge 0$.

For $n \ge 2$, the Riemannian curvature operator

$$\mathcal{R}:\wedge^2 T\Sigma \times \wedge^2 T\Sigma \to \mathbb{R}$$

measures intrinsic curvature (vanishes if and only if Σ is locally isometric to \mathbb{R}^n).

For k = 1 and $n \ge 2$, $A \ge 0$ if and only if $\mathcal{R} \ge 0$.

For all $k \ge 1$, we now know that if $|\operatorname{tr} A| > 0$ then

$$|A|^2 \leq rac{1}{n-1} |\operatorname{tr} A|^2 \Rightarrow \mathcal{R} \geq 0.$$

To summarise, $|A|^2 \leq \frac{1}{n-1} |\operatorname{tr} A|^2$ is :

- Extrinsic
- Independent of choices of bases
- Forces nonnegativity of the intrinsic curvature,

and so, might serve as a high-codimension substitute for convexity.

To summarise, $|A|^2 \leq \frac{1}{n-1} |\operatorname{tr} A|^2$ is :

- Extrinsic
- Independent of choices of bases
- Forces nonnegativity of the intrinsic curvature,

and so, might serve as a high-codimension substitute for convexity.

For example...

A Liouville-type theorem for high codimension mean curvature flow:

Theorem

Let $\Sigma_t^n \subset \mathbb{R}^{n+k}$, $n \ge 2$, solve mean curvature flow for all $t \in (-\infty, 0)$. If there is a positive constant ε such that

$$|A|^2 - rac{1}{n-1}|\operatorname{tr} A|^2 \leq -arepsilon|\operatorname{tr} A|^2 < 0$$

on Σ_t for all $t \in (-\infty, 0)$, then Σ_t is a family of homothetically shrinking spheres inside an affine copy of \mathbb{R}^{n+1} .