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Let Σ ⊂ Rn+1 be a smooth embedded copy of

Sn := {x ∈ Rn+1 : |x | = 1}.

I Jordan-Brouwer tells us that Σ bounds a domain Ω ⊂ Rn+1

I Ω is convex if for every x , y ∈ Ω, the straight line connecting
x and y remains in Ω
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An infinitesimal description of convexity:

I Let ν : Σ→ Sn be a smooth normal vectorfield on Σ

I Dν completely describes how Σ is curving in the ambient
space

I It is convenient to define an operator A (the second
fundamental form) by

A : TΣ× TΣ→ R
(X ,Y ) 7→ 〈DXν,Y 〉

I Σ is convex if and only if A ≥ 0

This is useful for doing analysis (picture A solving some PDE).
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Suppose now that Σ is instead an embedded copy of Sn in Rn+k .

The normal space

NΣ := {V ∈ Rn+k : 〈V ,X 〉 = 0 ∀X ∈ TΣ}

is now k-dimensional.

If {να} is an orthonormal basis for NΣ, we define

Aα : TΣ× TΣ→ R
(X ,Y ) 7→ 〈DXνα,Y 〉
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The k maps {Aα} are the components of the vector-valued second
fundamental form

A : TΣ× TΣ→ NΣ.

Convexity no longer makes sense, but maybe we can place a (nice)
condition on A which recovers some of its properties...
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Nice = basis invariant.

Some basis invariant objects:

I |A|2 :=
∑

α |Aα|2 =
∑

α tr(AT
αAα)

I trA =
∑

α trAα

I | trA|2

Ansatz for the new condition:

|A|2 ≤ cn| trA|2.
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Returning to k = 1, A : TΣ× TΣ→ R is symmetric and can be
diagonalised. Denote its eigenvalues by λ1, . . . , λ2.

I |A| ≤ cn| trA|2 says that

∑
i

λ2i ≤ cn

(∑
i

λi

)2

.

I For cn = 1
n , Young’s inequality implies

λ1 = · · · = λn,

in which case trA ≥ 0⇒ A ≥ 0.

I trA ≥⇒ A ≥ 0 still holds if cn ≤ 1
n−1 (sharp).
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What can we say about the condition

|A|2 ≤ 1

n − 1
| trA|2

for larger values of k? What properties does it share with
convexity?

For k = 1 and n = 2, A ≥ 0 implies that the Gauss curvature of Σ
(given by detA) is nonnegative.

The Gauss curvature is intrinsic (depends only on the metric
structure of Σ) and vanishes if and only if Σ is locally isometric to
R2.
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For n ≥ 2, the Riemannian curvature operator

R : ∧2TΣ× ∧2TΣ→ R

measures intrinsic curvature (vanishes if and only if Σ is locally
isometric to Rn).

For k = 1 and n ≥ 2, A ≥ 0 if and only if R ≥ 0.

For all k ≥ 1, we now know that if | trA| > 0 then

|A|2 ≤ 1

n − 1
| trA|2 ⇒ R ≥ 0.
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To summarise, |A|2 ≤ 1
n−1 | trA|2 is :

I Extrinsic

I Independent of choices of bases

I Forces nonnegativity of the intrinsic curvature,

and so, might serve as a high-codimension substitute for convexity.

For example...
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A Liouville-type theorem for high codimension mean curvature flow:

Theorem
Let Σn

t ⊂ Rn+k , n ≥ 2, solve mean curvature flow for all
t ∈ (−∞, 0). If there is a positive constant ε such that

|A|2 − 1

n − 1
| trA|2 ≤ −ε| trA|2 < 0

on Σt for all t ∈ (−∞, 0), then Σt is a family of homothetically
shrinking spheres inside an affine copy of Rn+1.


