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» Jordan-Brouwer tells us that ¥ bounds a domain Q ¢ R"+1

> Q is convex if for every x,y € Q, the straight line connecting
x and y remains in
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An infinitesimal description of convexity:

> Let v: X — S" be a smooth normal vectorfield on X

» Dv completely describes how X is curving in the ambient
space

» It is convenient to define an operator A (the second
fundamental form) by

A TExTE =R
(X,Y) = (Dxv,Y)

» > is convex if and only if A> 0

This is useful for doing analysis (picture A solving some PDE).
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Suppose now that ¥ is instead an embedded copy of S” in Rk,

The normal space
N = {VeR"™ . (V,X)=0V¥XeTx}

is now k-dimensional.

If {vo} is an orthonormal basis for N¥, we define

Ay TEXTE =R
(X,Y) = (Dxva, Y)



The k maps {A,} are the components of the vector-valued second
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The k maps {A,} are the components of the vector-valued second
fundamental form
A: TEx TX = NX.

Convexity no longer makes sense, but maybe we can place a (nice)
condition on A which recovers some of its properties...
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Nice = basis invariant.

Some basis invariant objects:

> AR = 0 A = Y tr(AT Aq)
»trA=) _ trA,
> |tr A2

Ansatz for the new condition:

|A]2 < cp|tr A2
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Returningto k=1, A: TL x TX — R is symmetric and can be
diagonalised. Denote its eigenvalues by A1,..., Ao.

» |A| < cp|tr A]? says that

piee(s)

» For ¢, = % Young's inequality implies

M ==\,

in which casetrA>0=A>0.
> trA>= A > 0 still holds if ¢, < 11 (sharp).

— n—




What can we say about the condition
AR < —1 | AP
~n-—1

for larger values of k? What properties does it share with
convexity?



What can we say about the condition
AR < —1 | AP
~n-—1

for larger values of k? What properties does it share with
convexity?

For k =1 and n =2, A> 0 implies that the Gauss curvature of X
(given by det A) is nonnegative.



What can we say about the condition
AR < —1 | AP
~n-—1

for larger values of k? What properties does it share with
convexity?

For k =1 and n =2, A> 0 implies that the Gauss curvature of X
(given by det A) is nonnegative.

The Gauss curvature is intrinsic (depends only on the metric
structure of ¥) and vanishes if and only if X is locally isometric to
R2.
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For n > 2, the Riemannian curvature operator
R:ANTE x A°TEZ - R

measures intrinsic curvature (vanishes if and only if X is locally
isometric to R").

For k=1and n>2, A>0if and only if R > 0.
For all k > 1, we now know that if | tr A| > 0 then

1



To summarise, |A|? < ﬁ]trA|2 is
» Extrinsic
» Independent of choices of bases
» Forces nonnegativity of the intrinsic curvature,
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To summarise, |A|? < ﬁ]trA|2 is
» Extrinsic
» Independent of choices of bases
» Forces nonnegativity of the intrinsic curvature,

and so, might serve as a high-codimension substitute for convexity.

For example...



A Liouville-type theorem for high codimension mean curvature flow:

Theorem
Let X7 C Rk n > 2 solve mean curvature flow for all
t € (—00,0). If there is a positive constant € such that

1
AP — ——|tr AP < —e|tr AP < 0
n_

on X, forall t € (—o0,0), then . is a family of homothetically
shrinking spheres inside an affine copy of R™1.



