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Theory of Knotted Graphs and Applications

Knot Theory and Chemical Structures in R3

I Mathematics and conventional knot theory: How do finite,
sufficiently nice, closed curves entangle in R3?

I Physics and chemistry: What kind of structures in R3 have
what properties? What topological aspects of the structure
gives them these properties? How are structures different?

I Is there a meaningful and simple way to combine the above
approaches?
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Theory of Knotted Graphs and Applications

Entangled Graphs - Nets

I One way of combining them: How can embedded graphs in
R3 entangle? What if they are periodic, i.e. lifts of graphs on
a three dimensional torus, instead of compact curves?

I Important in chemistry and physics, because of
I self-assembly processes
I scalability
I locality

I Is there a way to go about starting a classification of
entanglements of graphs? What about special subsets of
graphs?
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Theory of Knotted Graphs and Applications

Symmetric Graphs

I Start with constructions of symmetric embeddings of periodic
graphs. -Crystallography

I Real world context
I Molecular structures often grow in restricted environments

modelled as a neighborhood of constant mean curvature or
minimal surfaces

Figure: Entangled Nets
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Theory of Knotted Graphs and Applications

How do Chemical Structures give rise to Minimal Surfaces?

Length Scale Å(atomic) 100 Å µm (mesoscale)

How structures relate
to minimal surfaces

Atomic structures as
graphs on surfaces

Liquid Crystals
form the Surface

MOFs as graphs
on surfaces
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Minimal Surfaces

Minimal Surfaces

I Minimal surfaces locally minimize their surface area relative to
the boundary of a small neighborhood of any point.

I The soap film bounded by a wire is a minimal surface, many
equipotential surfaces in nature are (close to) minimal, and
many membranes found in living tissue.

Figure: Minimal surfaces as soap films between wires (Paul Nylander)
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Minimal Surfaces

Mathematical Advantages of Minimal Surfaces?

I Minimal surfaces are special in many ways.

I Harmonic parametrization
=⇒ The mean curvature is zero.
=⇒ Hyperbolic almost everywhere.

I Maximum principle

I They are usually very symmetric
(we can assume they always are)

I Internal symmetries (mostly) lift to
Euclidean symmetries in R3

Benedikt Kolbe Australian National University

Entangled Nets from Surface Drawings



Preliminaries General Idea Enumerating Nets by Complexity Conclusion

Minimal Surfaces

Mathematical Advantages of Minimal Surfaces?

I Minimal surfaces are special in many ways.

I Harmonic parametrization

=⇒ The mean curvature is zero.
=⇒ Hyperbolic almost everywhere.

I Maximum principle

I They are usually very symmetric
(we can assume they always are)

I Internal symmetries (mostly) lift to
Euclidean symmetries in R3

Benedikt Kolbe Australian National University

Entangled Nets from Surface Drawings



Preliminaries General Idea Enumerating Nets by Complexity Conclusion

Minimal Surfaces

Mathematical Advantages of Minimal Surfaces?

I Minimal surfaces are special in many ways.

I Harmonic parametrization
=⇒ The mean curvature is zero.

=⇒ Hyperbolic almost everywhere.

I Maximum principle

I They are usually very symmetric
(we can assume they always are)

I Internal symmetries (mostly) lift to
Euclidean symmetries in R3

Benedikt Kolbe Australian National University

Entangled Nets from Surface Drawings



Preliminaries General Idea Enumerating Nets by Complexity Conclusion

Minimal Surfaces

Mathematical Advantages of Minimal Surfaces?

I Minimal surfaces are special in many ways.

I Harmonic parametrization
=⇒ The mean curvature is zero.
=⇒ Hyperbolic almost everywhere.

I Maximum principle

I They are usually very symmetric
(we can assume they always are)

I Internal symmetries (mostly) lift to
Euclidean symmetries in R3

Benedikt Kolbe Australian National University

Entangled Nets from Surface Drawings



Preliminaries General Idea Enumerating Nets by Complexity Conclusion

Minimal Surfaces

Mathematical Advantages of Minimal Surfaces?

I Minimal surfaces are special in many ways.

I Harmonic parametrization
=⇒ The mean curvature is zero.
=⇒ Hyperbolic almost everywhere.

I Maximum principle

I They are usually very symmetric
(we can assume they always are)

I Internal symmetries (mostly) lift to
Euclidean symmetries in R3

Benedikt Kolbe Australian National University

Entangled Nets from Surface Drawings



Preliminaries General Idea Enumerating Nets by Complexity Conclusion

Minimal Surfaces

Mathematical Advantages of Minimal Surfaces?

I Minimal surfaces are special in many ways.

I Harmonic parametrization
=⇒ The mean curvature is zero.
=⇒ Hyperbolic almost everywhere.

I Maximum principle

I They are usually very symmetric
(we can assume they always are)

I Internal symmetries (mostly) lift to
Euclidean symmetries in R3

Benedikt Kolbe Australian National University

Entangled Nets from Surface Drawings



Preliminaries General Idea Enumerating Nets by Complexity Conclusion

Minimal Surfaces

Mathematical Advantages of Minimal Surfaces?

I Minimal surfaces are special in many ways.

I Harmonic parametrization
=⇒ The mean curvature is zero.
=⇒ Hyperbolic almost everywhere.

I Maximum principle

I They are usually very symmetric
(we can assume they always are)

I Internal symmetries (mostly) lift to
Euclidean symmetries in R3

Benedikt Kolbe Australian National University

Entangled Nets from Surface Drawings



Preliminaries General Idea Enumerating Nets by Complexity Conclusion

Minimal Surfaces

Mathematical Advantages of Minimal Surfaces?

I Minimal surfaces are special in many ways.

I Harmonic parametrization
=⇒ The mean curvature is zero.
=⇒ Hyperbolic almost everywhere.

I Maximum principle

I They are usually very symmetric
(we can assume they always are)

I Internal symmetries (mostly) lift to
Euclidean symmetries in R3

Benedikt Kolbe Australian National University

Entangled Nets from Surface Drawings



Preliminaries General Idea Enumerating Nets by Complexity Conclusion

Minimal Surfaces

Minimal Surfaces - cont.

I Triply periodic minimal surfaces such as the Gyroid, the
diamond or the primitive surface are particularly important in
nature.

I The translations are a result of more refined symmetries.
I These symmetries yield the structure of a hyperbolic orbifold.
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Minimal Surfaces

Take-Home Message I

I Molecular structures can be modelled as graphs embedded on
surfaces.

I Many of these structures exhibit symmetries.

I Minimal surfaces are close to surfaces that are ubiquitous in
nature.

I Prominent (triply periodic) minimal surfaces exhibit a high
degree of symmetry

I They are covered by the hyperbolic plane H2
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Orbifolds

Orbifolds - Quick and Dirty

Definition - Developable Orbifold

Let X be a paracompact Hausdorff space and G Lie group with a
smooth, effective and almost free action G y X . Then the set of
data associated with the quotient map π : X → X/G is an orbifold.

Figure: Euclidean and Hyperbolic 2D Developable Orbifolds
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Orbifolds

Examples

?532 - Picture from Wikipedia
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Orbifolds

Take-Home Message II

I Orbifolds are generalisations of surfaces that account for
symmetries

I A hyperbolic surface will only have hyperbolic orbifolds ’sitting
inside it’

I Symmetries for all surfaces are more or less what we know
from everyday life
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Decorating the Surface

Decorating the Surface

I Structures in R3 can be very complicated and hard to analyse.
Even conventional knot theory has many open questions.

I Observation: Every entangled structure can be drawn on some
surface.

I Idea: Investigate three dimensional interpenetrating nets by
drawing graphs on a minimal surface, and then after
embedding it into R3, forgetting about the surface.

Figure: Entangled Nets
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Decorating the Surface

Link to Hyperbolic Tilings

I Lift decoration of surface to its universal cover → decorations
become hyperbolic tilings → Decorated Orbifold

I Canonical isotopy representative of the graph on the orbifold
by ’pulling the graph as taut as possible’ in uniformized
metric, i.e. in the hyperbolic plane H2.

I In this way, to study entangled graphs in R3 and systemically
construct them, we mainly deal with symmetric graphs on
minimal surfaces and therefore tilings of H2, which is much
easier.

I The symmetries of the surface embeddings have
corresponding symmetries of the 3D embedding.

I Only works for tame embeddings of graphs in R3.
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Mapping Class Group

Definition - Mapping Class Group

The mapping class group (MCG) of an orientable closed surface S
is defined as Mod(S) = Diff+(S)/Diff0(S), i.e. all oriented
diffeomorphisms mod those that are in the connected component
of the identity.

I The MCG is the set of equivalence classes of positively
oriented diffeomorphisms of the surface, identifying those that
can be connected by a path (through diffeomorphisms).

I Prime example: Dehn twist of green curve around red curve.
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Mapping Class Group

What is the point? - Intuitive Part

I One fruitful approach to constructive knot theory is
enumeration by closed braids using Markov’s theorem.

I Applying elements of the MCG to simple decorations
successively generates all homotopy types of decorations with
the same combinatorial structure.

I The MCG has solvable word problem, so there is a natural
ordering of complexity of the group elements, which yields an
ordering of the patterns of the surface.
→ computational group theory and algebra.
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Mapping Class Group

How does it work? - Mathematical Part

I The Dehn-Nielsen-Baer Theorem asserts that there is a
natural isomorphism between Aut(π1(S)) and Mod±(S) for
surfaces S .

I Since the generators of π1(S) yield natural Dirichlet
fundamental domains, after choosing a point, their positions
give all possible ways to tile H2 using a fixed set of generators.

I Implicit here is the description of Teichmüller space as
equivalence classes of tilings, mod base ’point pushes’ and
hyperbolic isometries.
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Mapping Class Group

Good News for Orbifold Fans

I Everything works (almost) like it did for closed surfaces.

I We can enumerate tilings and therefore symmetric drawings
on a surface with a given orbifold structure, starting from
decorations of the orbifold in H2.

I The complexity ordering, given natural generators for
Mod(O), is ’close to what our intuition expects.’

I Orbifold group elements can be treated as closed curves →
study the MCG of orbifolds by its action on simple closed
curves.
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Mapping Class Group

Take-Home Message III

I The mapping class group generates different decorations of a
surface or orbifold starting from a given one.

I The MCG is very complicated in general, but has a nice set of
generators.

I Orbifolds are subtle, but even complicated things like the
study of MCGs can be made to work for them.

I Algebra is easier than geometry.
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Mapping Class Group

Examples of different tilings of the hyperbolic plane with
the same combinatorial structure

Figure: Hyperbolic Tilings that are related by elements of the mapping
class group. The blue lines are used in the construction, the tiling is
defined by only the green and red lines.

I Note that classical tiling theory does not treat these tilings
because the tiles are unbounded.
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Mapping Class Group

Example of a Tiling of the Hyperbolic Plane and the
Resulting Net

Figure: Hyperbolic Tiling and the corresponding drawing on the diamond
surface in R3.
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Mapping Class Group

Example of a Tiling of the Hyperbolic Plane and the
Resulting Net

Figure: The corresponding net in R3, representing a molecular structure
grown on the diamond surface with two distinct strands.
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Final Take-Home Message

Summary

I Structures in three dimensions are much too complicated to
analyse directly.

I By using nice surfaces, one can study structures by examining
them on the surface.

I Symmetric patterns can be studied using the universal
covering space, the hyperbolic plane.

I Because two-dimensions are nice, all (sufficiently simple)
patterns with a given combinatorial structure can be produced
from a single such pattern.

I The resulting structures have a natural ordering by complexity.

I Potential uses include systemically checking structures for
certain physical properties, for possible synthetic materials.
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Final Take-Home Message

Thank you for your Attention

Work done in collaboration with
Myfanwy Evans, TUB; Vanessa Robins and Stephen Hyde, ANU
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