Space-optimal collaborative exploration

of undirected graphs

Yann Disser Jan Hackfeld Max Klimm
Humboldt-Universitat zu Berlin

23.02.2018

UFG

SPP 1736

Berlin
Mathematical
School




Introduction and model

The octagonal Jubilee Maze at Symonds Yat - NotFromUtrecht - CC 3.0

Jan Hackfeld. Space-optimal collaborative exploration



Introduction and model

® k agents in undirected, initially unknown graph

Jan Hackfeld. Space-optimal collaborative exploration



Introduction and model

® k agents in undirected, initially unknown graph
o vertices unlabeled, edges (locally) labeled



Introduction and model

® k agents in undirected, initially unknown graph
o vertices unlabeled, edges (locally) labeled
e goal: explore graph (every edge traversed by an agent)



Introduction and model

® k agents in undirected, initially unknown graph
o vertices unlabeled, edges (locally) labeled
e goal: explore graph (every edge traversed by an agent)




Introduction and model

® k agents in undirected, initially unknown graph
o vertices unlabeled, edges (locally) labeled
e goal: explore graph (every edge traversed by an agent)

Global View

Agent's View




Introduction and model

® k agents in undirected, initially unknown graph
o vertices unlabeled, edges (locally) labeled
e goal: explore graph (every edge traversed by an agent)

Global View

Agent's View




Introduction and model

® k agents in undirected, initially unknown graph
o vertices unlabeled, edges (locally) labeled
e goal: explore graph (every edge traversed by an agent)

Global View

Agent's View




Introduction and model

® k agents in undirected, initially unknown graph
o vertices unlabeled, edges (locally) labeled
e goal: explore graph (every edge traversed by an agent)

Global View

Agent's View




Introduction and model

® k agents in undirected, initially unknown graph
o vertices unlabeled, edges (locally) labeled
e goal: explore graph (every edge traversed by an agent)

Global View

Agent's View




Introduction and model

® k agents in undirected, initially unknown graph
o vertices unlabeled, edges (locally) labeled
e goal: explore graph (every edge traversed by an agent)

Global View

Agent's View




Introduction and model

® k agents in undirected, initially unknown graph
o vertices unlabeled, edges (locally) labeled
e goal: explore graph (every edge traversed by an agent)

Global View

Agent's View




Introduction and model

® k agents in undirected, initially unknown graph
o vertices unlabeled, edges (locally) labeled
e goal: explore graph (every edge traversed by an agent)

Global View

Agent's View




Introduction and model

® k agents in undirected, initially unknown graph
o vertices unlabeled, edges (locally) labeled
e goal: explore graph (every edge traversed by an agent)

Global View

Agent's View




Introduction and model

® k agents in undirected, initially unknown graph
o vertices unlabeled, edges (locally) labeled

e goal: explore graph (every edge traversed by an agent) minimizing
© memory requirement
o number of agents

Global View

Agent's View




Introduction and model

® k agents in undirected, initially unknown graph
o vertices unlabeled, edges (locally) labeled

e goal: explore graph (every edge traversed by an agent) minimizing
© memory requirement
o number of agents

e every transition of agent depends on:

Agent's View

Global View




Introduction and model

® k agents in undirected, initially unknown graph
o vertices unlabeled, edges (locally) labeled
e goal: explore graph (every edge traversed by an agent) minimizing
© memory requirement
o number of agents
e every transition of agent depends on:
o label of incoming edge used last

Agent's View

Global View




Introduction and model

® k agents in undirected, initially unknown graph
o vertices unlabeled, edges (locally) labeled
e goal: explore graph (every edge traversed by an agent) minimizing
© memory requirement
o number of agents
e every transition of agent depends on:
o label of incoming edge used last
o degree of current vertex

Agent's View

Global View




Introduction and model

® k agents in undirected, initially unknown graph
o vertices unlabeled, edges (locally) labeled
e goal: explore graph (every edge traversed by an agent) minimizing
© memory requirement
o number of agents
e every transition of agent depends on:
o label of incoming edge used last
o degree of current vertex
o state of the agent and of other agents at current location

Agent's View

Global View




Introduction and model

® k agents in undirected, initially unknown graph
o vertices unlabeled, edges (locally) labeled
e goal: explore graph (every edge traversed by an agent) minimizing
© memory requirement
o number of agents
e every transition of agent depends on:
o label of incoming edge used last
o degree of current vertex
o state of the agent and of other agents at current location

Agent's View ! Global View
!
|
|
!

1 !

0 1 !
—a |
|

|

|

|




Introduction and model

® k agents in undirected, initially unknown graph
o vertices unlabeled, edges (locally) labeled
e goal: explore graph (every edge traversed by an agent) minimizing
© memory requirement
o number of agents
e every transition of agent depends on:
o label of incoming edge used last
o degree of current vertex
o state of the agent and of other agents at current location

Agent's View

Global View




Introduction and model

® k agents in undirected, initially unknown graph
o vertices unlabeled, edges (locally) labeled
e goal: explore graph (every edge traversed by an agent) minimizing
© memory requirement
o number of agents
e every transition of agent depends on:
o label of incoming edge used last
o degree of current vertex
o state of the agent and of other agents at current location

Agent's View

Global View




Introduction and model

® k agents in undirected, initially unknown graph
o vertices unlabeled, edges (locally) labeled
e goal: explore graph (every edge traversed by an agent) minimizing
© memory requirement
o number of agents
e every transition of agent depends on:
o label of incoming edge used last
o degree of current vertex
o state of the agent and of other agents at current location

Agent's View ! Global View
!
|
|
!

1 !

0 1 !
—a |
|

|

|

|




Introduction and model

® k agents in undirected, initially unknown graph
o vertices unlabeled, edges (locally) labeled
e goal: explore graph (every edge traversed by an agent) minimizing
© memory requirement
o number of agents
e every transition of agent depends on:
o label of incoming edge used last
o degree of current vertex
o state of the agent and of other agents at current location

Agent's View

Global View




Known and new results

n = number of vertices of the undirected graph

Jan Hackfeld. Space-optimal collaborative exploration



Known and new results

n = number of vertices of the undirected graph

k =1 agent:

Jan Hackfeld. Space-optimal collaborative exploration



Known and new results

n = number of vertices of the undirected graph

k =1 agent:
* Q(log n) bits necessary [1]

[1] Fraigniaud, licinkas, Peer, Pelc, Peleg, TCS, 2005.



Known and new results

n = number of vertices of the undirected graph
k =1 agent:

* Q(log n) bits necessary [1]

* O(log n) bits sufficient [2]

[1] Fraigniaud, licinkas, Peer, Pelc, Peleg, TCS, 2005.
[2] Reingold, JACM, 2008.



Known and new results

n = number of vertices of the undirected graph
k =1 agent:

* Q(log n) bits necessary [1]

* O(log n) bits sufficient [2]

k > 1 agents:

[1] Fraigniaud, licinkas, Peer, Pelc, Peleg, TCS, 2005.
[2] Reingold, JACM, 2008.



Known and new results

n = number of vertices of the undirected graph

k =1 agent:

* Q(log n) bits necessary [1]

* O(log n) bits sufficient [2]

k > 1 agents:

. Q(IogZ‘Zb) n) agents with b bits each necessary [3]

[1] Fraigniaud, licinkas, Peer, Pelc, Peleg, TCS, 2005.
[2] Reingold, JACM, 2008.
[3] Rollik, Acta Informatica, 1980.



Known and new results

n = number of vertices of the undirected graph
k =1 agent:

* Q(log n) bits necessary [1]

* O(log n) bits sufficient [2]

k > 1 agents:

. Q(Iogab) n) agents with b bits each necessary [3]
e Q(loglog n) agents necessary [4]

1] Fraigniaud, llcinkas, Peer, Pelc, Peleg, TCS, 2005.
2] Reingold, JACM, 2008.

3] Rollik, Acta Informatica, 1980.

4] Disser, H., Klimm, in preperation.

[
[
[
[



Known and new results

n = number of vertices of the undirected graph

k =1 agent:
* Q(log n) bits necessary [1]
* O(log n) bits sufficient [2]

k > 1 agents:

. Q(Iogab) n) agents with b bits each necessary [3]
e Q(loglog n) agents necessary [4]

* O(loglog n) agents with O(1) bits sufficient [4]

| Fraigniaud, llcinkas, Peer, Pelc, Peleg, TCS, 2005.
| Reingold, JACM, 2008.

| Rollik, Acta Informatica, 1980.

| Disser, H., Klimm, in preperation.

[1
[2
[3
[4



Upper bound

Jan Hackfeld. Space-optimal collaborative exploration



Exploration algorithm - obstacles

Theorem (Disser, H., Klimm)

O(log log n) agents with O(1) memory each can explore
any graph on at most n vertices in polynomial time.

Jan Hackfeld. Space-optimal collaborative exploration



Exploration algorithm - obstacles

Theorem (Disser, H., Klimm)

O(loglog n) agents with O(1) memory each can explore
any graph on at most n vertices in polynomial time.

Issues:
e high degree vertices with constant memory?

Jan Hackfeld. Space-optimal collaborative exploration



Exploration algorithm - obstacles

Theorem (Disser, H., Klimm)

O(loglog n) agents with O(1) memory each can explore
any graph on at most n vertices in polynomial time.

Issues:
e high degree vertices with constant memory?
o transitions can depend on last edge used

Jan Hackfeld. Space-optimal collaborative exploration



Exploration algorithm - obstacles

Theorem (Disser, H., Klimm)

O(loglog n) agents with O(1) memory each can explore
any graph on at most n vertices in polynomial time.

Issues:
e high degree vertices with constant memory?
o transitions can depend on last edge used

Jan Hackfeld. Space-optimal collaborative exploration



Exploration algorithm - obstacles

Theorem (Disser, H., Klimm)

O(loglog n) agents with O(1) memory each can explore
any graph on at most n vertices in polynomial time.

Issues:
e high degree vertices with constant memory?
o transitions can depend on last edge used

Jan Hackfeld. Space-optimal collaborative exploration



Exploration algorithm - obstacles

Theorem (Disser, H., Klimm)

O(loglog n) agents with O(1) memory each can explore
any graph on at most n vertices in polynomial time.

Issues:
e high degree vertices with constant memory?
o transitions can depend on last edge used

Jan Hackfeld. Space-optimal collaborative exploration



Exploration algorithm - obstacles

Theorem (Disser, H., Klimm)

O(loglog n) agents with O(1) memory each can explore
any graph on at most n vertices in polynomial time.

Issues:
e high degree vertices with constant memory?
o transitions can depend on last edge used

Jan Hackfeld. Space-optimal collaborative exploration



Exploration algorithm - obstacles

Theorem (Disser, H., Klimm)

O(loglog n) agents with O(1) memory each can explore
any graph on at most n vertices in polynomial time.

Issues:
e high degree vertices with constant memory?
o transitions can depend on last edge used

Jan Hackfeld. Space-optimal collaborative exploration



Exploration algorithm - obstacles

Theorem (Disser, H., Klimm)

O(loglog n) agents with O(1) memory each can explore
any graph on at most n vertices in polynomial time.

Issues:
e high degree vertices with constant memory?
o transitions can depend on last edge used

Jan Hackfeld. Space-optimal collaborative exploration



Exploration algorithm - obstacles

Theorem (Disser, H., Klimm)

O(loglog n) agents with O(1) memory each can explore
any graph on at most n vertices in polynomial time.

Issues:
e high degree vertices with constant memory?
o transitions can depend on last edge used

Jan Hackfeld. Space-optimal collaborative exploration



Exploration algorithm - obstacles

Theorem (Disser, H., Klimm)

O(loglog n) agents with O(1) memory each can explore
any graph on at most n vertices in polynomial time.

Issues:

e high degree vertices with constant memory?
o transitions can depend on last edge used

e only constant number of actions?

Jan Hackfeld. Space-optimal collaborative exploration



Exploration algorithm - obstacles

Theorem (Disser, H., Klimm)

O(loglog n) agents with O(1) memory each can explore
any graph on at most n vertices in polynomial time.

Issues:
e high degree vertices with constant memory?
o transitions can depend on last edge used
e only constant number of actions?
o transitions can depend on states of other agents at same vertex

Jan Hackfeld. Space-optimal collaborative exploration



Exploration algorithm - obstacles

Theorem (Disser, H., Klimm)

O(loglog n) agents with O(1) memory each can explore
any graph on at most n vertices in polynomial time.

Issues:
e high degree vertices with constant memory?
o transitions can depend on last edge used
e only constant number of actions?
o transitions can depend on states of other agents at same vertex
= k agents with O(1) bits of memory at least as powerful as
1 agent with O(k) bits of memory



Exploration algorithm - obstacles

Theorem (Disser, H., Klimm)

O(loglog n) agents with O(1) memory each can explore
any graph on at most n vertices in polynomial time.

Issues:

e high degree vertices with constant memory?
o transitions can depend on last edge used
e only constant number of actions?
o transitions can depend on states of other agents at same vertex
= k agents with O(1) bits of memory at least as powerful as
1 agent with O(k) bits of memory

O(loglog n) agents

half of the agents move togeth \us‘e half of the agents as markers

1 agent with ©(log log n) bits O(loglog n) pebbles



Exploration algorithm - main idea

Jan Hackfeld. Space-optimal collaborative exploration



Exploration algorithm - main idea

e assume: agent B can find closed walk w

Jan Hackfeld. Space-optimal collaborative exploration



Exploration algorithm - main idea

e assume: agent B can find closed walk w

e positions of pebbles 1 (marker agents) along w encode memory




Exploration algorithm - main idea

e assume: agent B can find closed walk w

e positions of pebbles 1 (marker agents) along w encode memory




Exploration algorithm - main idea

e assume: agent B can find closed walk w

e positions of pebbles 1 (marker agents) along w encode memory




Exploration algorithm - main idea

e assume: agent B can find closed walk w

e positions of pebbles 1 (marker agents) along w encode memory




Exploration algorithm - main idea

e assume: agent B can find closed walk w

e positions of pebbles 1 (marker agents) along w encode memory




Exploration algorithm - main idea

e assume: agent B can find closed walk w

e positions of pebbles 1 (marker agents) along w encode memory




Exploration algorithm - main idea

e assume: agent B can find closed walk w

e positions of pebbles 1 (marker agents) along w encode memory




Exploration algorithm - main idea

e assume: agent B can find closed walk w

e positions of pebbles 1 (marker agents) along w encode memory

Challenges:

e vertices appearing multiple times along w



Exploration algorithm - main idea

e assume: agent B can find closed walk w

e positions of pebbles 1 (marker agents) along w encode memory

Challenges:
e vertices appearing multiple times along w

e carrying the memory along while agent traverses graph



Exploration algorithm

Theorem (Reingold, JACM '08)
Agent with O(log n) bits can explore any graph with n vertices.

Jan Hackfeld. Space-optimal collaborative exploration



Exploration algorithm

Theorem (Reingold, JACM '08)
| Agent with O(log n) bits can explore any graph with n vertices.

Lemma (Disser, H., Klimm)

Agent with O(log a) bits of memory can
e move on closed walk

e visit at least min{a, n} vertices in any graph

L

Jan Hackfeld. Space-optimal collaborative exploration



Exploration algorithm

Lemma (Disser, H., Klimm)

Agent with O(log a) bits of memory can
e move on closed walk

e visit at least min{a, n} vertices in any graph

Jan Hackfeld. Space-optimal collaborative exploration



Exploration algorithm

Lemma (Disser, H., Klimm)

Agent with O(log a) bits of memory can
e move on closed walk

e visit at least min{a, n} vertices in any graph

Jan Hackfeld. Space-optimal collaborative exploration



Exploration algorithm

Lemma (Disser, H., Klimm)

Agent with O(log a) bits of memory can
e move on closed walk

e visit at least min{a, n} vertices in any graph

Jan Hackfeld. Space-optimal collaborative exploration



Exploration algorithm

Lemma (Disser, H., Klimm)

Agent with O(log a) bits of memory can
e move on closed walk

e visit at least min{a, n} vertices in any graph

Jan Hackfeld. Space-optimal collaborative exploration



Exploration algorithm

Lemma (Disser, H., Klimm)

Agent with O(log a) bits of memory can
e move on closed walk

e visit at least min{a, n} vertices in any graph

Jan Hackfeld. Space-optimal collaborative exploration



Exploration algorithm

Lemma (Disser, H., Klimm)

Agent with O(log a) bits of memory can
e move on closed walk

e visit at least min{a, n} vertices in any graph

\\
N a

/
/

Jan Hackfeld. Space-optimal collaborative exploration



Exploration algorithm

Lemma (Disser, H., Klimm)

Agent with O(log a) bits of memory can
e move on closed walk

e visit at least min{a, n} vertices in any graph

Algorithm:

‘ memory = constant # bits

Jan Hackfeld. Space-optimal collaborative exploration



Exploration algorithm

Lemma (Disser, H., Klimm)

Agent with O(log a) bits of memory can
e move on closed walk

e visit at least min{a, n} vertices in any graph

Algorithm:

‘ memory = constant # bits

!

use memory to
find closed walk

Jan Hackfeld. Space-optimal collaborative exploration



Exploration algorithm

Lemma (Disser, H., Klimm)

Agent with O(log a) bits of memory can
e move on closed walk

e visit at least min{a, n} vertices in any graph

Algorithm:

‘ memory = constant # bits

!

use memory to
find closed walk

!

pebbles placed
along closed walk

memory =

Jan Hackfeld. Space-optimal collaborative exploration



Exploration algorithm

Lemma (Disser, H., Klimm)

Agent with O(log a) bits of memory can
e move on closed walk

e visit at least min{a, n} vertices in any graph

Algorithm:

‘ memory = constant # bits

!

use memory to
find closed walk

!

pebbles placed
along closed walk

memory =

Jan Hackfeld. Space-optimal collaborative exploration



Exploration algorithm

Lemma (Disser, H., Klimm)

Agent with O(log a) bits of memory can
e move on closed walk

e visit at least min{a, n} vertices in any graph

Algorithm: Key properties:

1. memory doubles in each step

‘ memory = constant # bits

l

use memory to
find closed walk

!

pebbles placed
along closed walk

memory =

Jan Hackfeld. Space-optimal collaborative exploration



Exploration algorithm

Lemma (Disser, H., Klimm)

Agent with O(log a) bits of memory can
e move on closed walk

e visit at least min{a, n} vertices in any graph

Algorithm: Key properties:
. 1. memory doubles in each step
memory = constant # bits . . .
= starting with ¢ bits of memory
l yields ¢ - 2'°€'°e" — c|og n bits
use memory to after log log n steps

find closed walk

!

pebbles placed
along closed walk

memory =

Jan Hackfeld. Space-optimal collaborative exploration



Exploration algorithm

Lemma (Disser, H., Klimm)

Agent with O(log a) bits of memory can
e move on closed walk

e visit at least min{a, n} vertices in any graph

Algorithm: Key properties:
. 1. memory doubles in each step
memory = constant # bits . . .
= starting with ¢ bits of memory
l yields ¢ - 2'°€'°e" — c|og n bits

f%’ss ”?emzry tlok after log log n steps
n Coie e = log log n steps sufficient

for exploring graph
__ pebbles placed

memory = along closed walk

Jan Hackfeld. Space-optimal collaborative exploration

~



Exploration algorithm

Lemma (Disser, H., Klimm)

Agent with O(log a) bits of memory can
e move on closed walk

e visit at least min{a, n} vertices in any graph

Algorithm: Key properties:
. 1. memory doubles in each step
memory = constant # bits . . .
= starting with ¢ bits of memory
l yields ¢ - 2'°€'°e" — c|og n bits

f%’ss ”?emzry tlok after log log n steps

n Coie e = log log n steps sufficient
for exploring graph

__ pebbles placed

MeMory = long closed walk 2. each step needs constant # pebbles




Exploration algorithm

Lemma (Disser, H., Klimm)

Agent with O(log a) bits of memory can
e move on closed walk

e visit at least min{a, n} vertices in any graph

Algorithm: Key properties:
. 1. memory doubles in each step
memory = constant # bits . . .
= starting with ¢ bits of memory
l yields ¢ - 2'°€'°e" — c|og n bits

f%’ss ”?emzry tlok after log log n steps

n Coie e = log log n steps sufficient
for exploring graph

__ pebbles placed

MeMory = long closed walk 2. each step needs constant # pebbles

= O(loglog n) pebbles needed




| ower bound

Jan Hackfeld. Space-optimal collaborative exploration



Lower bound - building block

A = set of k agents with s states each

Jan Hackfeld. Space-optimal collaborative exploration



Lower bound - building block

A = set of k agents with s states each

Definition (Barrier)

B is r-barrier for A < no subset of A of at most r agents
can traverse B from u to v (or vice versa)

Jan Hackfeld. Space-optimal collaborative exploration



Lower bound - building block

A = set of k agents with s states each

Definition (Barrier)

B is r-barrier for A < no subset of A of at most r agents
can traverse B from u to v (or vice versa)

\
Il
w

—

[l ]

Jan Hackfeld. Space-optimal collaborative exploration



Lower bound - building block

A = set of k agents with s states each

Definition (Barrier)

B is r-barrier for A < no subset of A of at most r agents
can traverse B from u to v (or vice versa)

Jan Hackfeld. Space-optimal collaborative exploration



Lower bound - building block

A = set of k agents with s states each

Definition (Barrier)

B is r-barrier for A < no subset of A of at most r agents
can traverse B from u to v (or vice versa)

Jan Hackfeld. Space-optimal collaborative exploration



Lower bound - building block

A = set of k agents with s states each

Definition (Barrier)

B is r-barrier for A < no subset of A of at most r agents
can traverse B from u to v (or vice versa)

Jan Hackfeld. Space-optimal collaborative exploration



Lower bound - building block

A = set of k agents with s states each

Definition (Barrier)

B is r-barrier for A < no subset of A of at most r agents
can traverse B from u to v (or vice versa)

Jan Hackfeld. Space-optimal collaborative exploration



Lower bound - building block

A = set of k agents with s states each

Definition (Barrier)

B is r-barrier for A < no subset of A of at most r agents
can traverse B from u to v (or vice versa)

Jan Hackfeld. Space-optimal collaborative exploration



Lower bound - building block

A = set of k agents with s states each

Definition (Barrier)

B is r-barrier for A < no subset of A of at most r agents
can traverse B from u to v (or vice versa)

Jan Hackfeld. Space-optimal collaborative exploration



Lower bound - building block

A = set of k agents with s states each

Definition (Barrier)

B is r-barrier for A < no subset of A of at most r agents
can traverse B from u to v (or vice versa)

Jan Hackfeld. Space-optimal collaborative exploration



Lower bound - building block

A = set of k agents with s states each

Definition (Barrier)

B is r-barrier for A < no subset of A of at most r agents
can traverse B from u to v (or vice versa)

Jan Hackfeld. Space-optimal collaborative exploration



Lower bound - building block

A = set of k agents with s states each

Definition (Barrier)

B is r-barrier for A < no subset of A of at most r agents
can traverse B from u to v (or vice versa)

Jan Hackfeld. Space-optimal collaborative exploration



Lower bound - building block

A = set of k agents with s states each

Definition (Barrier)

B is r-barrier for A < no subset of A of at most r agents
can traverse B from u to v (or vice versa)

Jan Hackfeld. Space-optimal collaborative exploration



Lower bound - building block

A = set of k agents with s states each

Definition (Barrier)

B is r-barrier for A < no subset of A of at most r agents
can traverse B from u to v (or vice versa)

Jan Hackfeld. Space-optimal collaborative exploration



Lower bound - building block

A = set of k agents with s states each

Definition (Barrier)

B is r-barrier for A < no subset of A of at most r agents
can traverse B from u to v (or vice versa)

Jan Hackfeld. Space-optimal collaborative exploration



Lower bound - building block

A = set of k agents with s states each

Definition (Barrier)

B is r-barrier for A < no subset of A of at most r agents
can traverse B from u to v (or vice versa)

Jan Hackfeld. Space-optimal collaborative exploration



Lower bound - building block

A = set of k agents with s states each

Definition (Barrier)

B is r-barrier for A < no subset of A of at most r agents
can traverse B from u to v (or vice versa)

Jan Hackfeld. Space-optimal collaborative exploration



Lower bound - building block

A = set of k agents with s states each

Definition (Barrier)
B is r-barrier for A < no subset of A of at most r agents
can traverse B from u to v (or vice versa)

OH® OO
Observation

Jan Hackfeld. Space-optimal collaborative exploration



Lower bound - building block

A = set of k agents with s states each

Definition (Barrier)
B is r-barrier for A < no subset of A of at most r agents
can traverse B from u to v (or vice versa)

Observation

® k-barrier for A yields graph that agents do not explore

Jan Hackfeld. Space-optimal collaborative exploration



Lower bound - building block

A = set of k agents with s states each

Definition (Barrier)
B is r-barrier for A < no subset of A of at most r agents
can traverse B from u to v (or vice versa)

Observation

® k-barrier for A yields graph that agents do not explore
e Size of k-barrier = lower bound on # agents and states per agent

Jan Hackfeld. Space-optimal collaborative exploration



Construction of 1-barrier [Fraigniaud et al., TCS '06]

e consider 1 agent in infinite 3-regular tree

Jan Hackfeld. Space-optimal collaborative exploration

10



Construction of 1-barrier [Fraigniaud et al., TCS '06]

e consider 1 agent in infinite 3-regular tree
= state determines next vertex




Construction of 1-barrier [Fraigniaud et al., TCS '06]

e consider 1 agent in infinite 3-regular tree
= state determines next vertex




Construction of 1-barrier [Fraigniaud et al., TCS '06]

e consider 1 agent in infinite 3-regular tree
= state determines next vertex




Construction of 1-barrier [Fraigniaud et al., TCS '06]

e consider 1 agent in infinite 3-regular tree
= state determines next vertex




Construction of 1-barrier [Fraigniaud et al., TCS '06]

e consider 1 agent in infinite 3-regular tree
= state determines next vertex
e state repeats after finite number of steps

same state




Construction of 1-barrier [Fraigniaud et al., TCS '06]

e consider 1 agent in infinite 3-regular tree
= state determines next vertex
e state repeats after finite number of steps ~ close loop




Construction of 1-barrier [Fraigniaud et al., TCS '06]

e consider 1 agent in infinite 3-regular tree
= state determines next vertex
e state repeats after finite number of steps ~ close loop




Construction of 1-barrier [Fraigniaud et al., TCS '06]

e consider 1 agent in infinite 3-regular tree
= state determines next vertex
e state repeats after finite number of steps ~ close loop




Construction of 1-barrier [Fraigniaud et al., TCS '06]

e consider 1 agent in infinite 3-regular tree
= state determines next vertex
e state repeats after finite number of steps ~ close loop




Construction of 1-barrier [Fraigniaud et al., TCS '06]

e consider 1 agent in infinite 3-regular tree
= state determines next vertex
e state repeats after finite number of steps ~ close loop




Construction of 1-barrier [Fraigniaud et al., TCS '06]

e consider 1 agent in infinite 3-regular tree
= state determines next vertex

e state repeats after finite number of steps ~ close loop
= barrier for fixed starting state with O(s) vertices




Construction of 1-barrier [Fraigniaud et al., TCS '06]

e consider 1 agent in infinite 3-regular tree
= state determines next vertex
e state repeats after finite number of steps ~ close loop
= barrier for fixed starting state with O(s) vertices
e repeat construction for all k agents and all s states of every agent




Construction of 1-barrier [Fraigniaud et al., TCS '06]

e consider 1 agent in infinite 3-regular tree
= state determines next vertex
e state repeats after finite number of steps ~ close loop
= barrier for fixed starting state with O(s) vertices
e repeat construction for all k agents and all s states of every agent




Construction of 1-barrier [Fraigniaud et al., TCS '06]

e consider 1 agent in infinite 3-regular tree
= state determines next vertex

e state repeats after finite number of steps ~ close loop
= barrier for fixed starting state with O(s) vertices

e repeat construction for all k agents and all s states of every agent
= 1-barrier with O(k - s?) vertices




Lower bound - recursive construction

e r agent in infinite 3-regular tree

Jan Hackfeld. Space-optimal collaborative exploration

11



Lower bound - recursive construction

e r agent in infinite 3-regular tree

o configuration (= states + relative positions of agents)
determines next vertex




Lower bound - recursive construction

e r agent in infinite 3-regular tree

o configuration (= states + relative positions of agents)
determines next vertex




Lower bound - recursive construction

e r agent in infinite 3-regular tree

o configuration (= states + relative positions of agents)
determines next vertex

Jan Hackfeld. Space-optimal collaborative exploration

11



Lower bound - recursive construction

e r agent in infinite 3-regular tree

o configuration (= states + relative positions of agents)
determines next vertex

Jan Hackfeld. Space-optimal collaborative exploration

11



Lower bound - recursive construction

e r agent in infinite 3-regular tree

o configuration (= states + relative positions of agents)
determines next vertex

Jan Hackfeld. Space-optimal collaborative exploration

11



Lower bound - recursive construction

e r agent in infinite 3-regular tree

o configuration (= states + relative positions of agents)
determines next vertex

Jan Hackfeld. Space-optimal collaborative exploration

11



Lower bound - recursive construction

e r agent in infinite 3-regular tree

o configuration (= states + relative positions of agents)
determines next vertex

Jan Hackfeld. Space-optimal collaborative exploration

11



Lower bound - recursive construction

e r agent in infinite 3-regular tree

o configuration (= states + relative positions of agents)
determines next vertex

e |dea: replace edges by (r — 1)-barrier B




Lower bound - recursive construction

e r agent in infinite 3-regular tree

o configuration (= states + relative positions of agents)
determines next vertex

e |dea: replace edges by (r — 1)-barrier B




Lower bound - recursive construction

e r agent in infinite 3-regular tree

o configuration (= states + relative positions of agents)
determines next vertex

e |dea: replace edges by (r — 1)-barrier B




Lower bound - recursive construction

e r agent in infinite 3-regular tree

o configuration (= states + relative positions of agents)
determines next vertex

e |dea: replace edges by (r — 1)-barrier B




Lower bound - recursive construction

e r agent in infinite 3-regular tree

o configuration (= states + relative positions of agents)
determines next vertex

e |dea: replace edges by (r — 1)-barrier B

o all r agents close together




Lower bound - recursive construction

e r agent in infinite 3-regular tree

o configuration (= states + relative positions of agents)
determines next vertex

e |dea: replace edges by (r — 1)-barrier B

o all r agents close together
o configuration repeats




Lower bound - recursive construction

e r agent in infinite 3-regular tree

o configuration (= states + relative positions of agents)
determines next vertex

e |dea: replace edges by (r — 1)-barrier B

o all r agents close together
o configuration repeats ~~ close loop (as for 1-barrier)




Lower bound - recursive construction

e r agent in infinite 3-regular tree

o configuration (= states + relative positions of agents)
determines next vertex

e |dea: replace edges by (r — 1)-barrier B

o all r agents close together
o configuration repeats ~~ close loop (as for 1-barrier)




Lower bound - recursive construction

e r agent in infinite 3-regular tree

o configuration (= states + relative positions of agents)
determines next vertex

e |dea: replace edges by (r — 1)-barrier B

o all r agents close together
o configuration repeats ~~ close loop (as for 1-barrier)




Lower bound - recursive construction

e r agent in infinite 3-regular tree

o configuration (= states + relative positions of agents)
determines next vertex

e |dea: replace edges by (r — 1)-barrier B

o all r agents close together
o configuration repeats ~~ close loop (as for 1-barrier)




Lower bound - recursive construction

e r agent in infinite 3-regular tree

o configuration (= states + relative positions of agents)
determines next vertex

e |dea: replace edges by (r — 1)-barrier B

o all r agents close together
o configuration repeats ~~ close loop (as for 1-barrier)




Lower bound - recursive construction

e r agent in infinite 3-regular tree

o configuration (= states + relative positions of agents)
determines next vertex

e |dea: replace edges by (r — 1)-barrier B

o all r agents close together
o configuration repeats ~~ close loop (as for 1-barrier)
o repeat construction for all (’;) subsets of r agents and all configs




Lower bound - recursive construction

e r agent in infinite 3-regular tree

o configuration (= states + relative positions of agents)
determines next vertex

e |dea: replace edges by (r — 1)-barrier B

o all r agents close together
o configuration repeats ~~ close loop (as for 1-barrier)
o repeat construction for all (’;) subsets of r agents and all configs




Lower bound

Theorem (Disser, H., Klimm)

For any set A of k agents with s states each,
. . k .
there is a graph with O(s'%") vertices that A does not explore.

Jan Hackfeld. Space-optimal collaborative exploration

12



Lower bound

~

\

Theorem (Disser, H., Klimm)

For any set A of k agents with s states each,
. . k .
there is a graph with O(s'%") vertices that A does not explore.

Theorem (Disser, H., Klimm)

Q(log log n) agents are necessary to explore any n vertex graph,

| if each agent has O((log n)=¢) bits of memory for & > 0.

Jan

Hackfeld. Space-optimal collaborative exploration

12



Summary

Exploration of any graph with n vertices by 1 agent requires
* Q(log n) bits of memory
[Fraigniaud, llcinkas, Peer, Pelc, Peleg, TCS '05]

* O(log n) bits of memory
[Reingold, JACM '08]

Jan Hackfeld. Space-optimal collaborative exploration

13



Summary

Exploration of any graph with n vertices by 1 agent requires
* Q(log n) bits of memory
[Fraigniaud, llcinkas, Peer, Pelc, Peleg, TCS '05]

* O(log n) bits of memory
[Reingold, JACM '08]

Exploration of any undirected graph with n vertices by k agents
requires

e Q(loglog n) agents if each agent has
at most O((log n)}~¢) bits of memory for ¢ > 0
* O(loglog n) agents with O(1) bits of memory



Summary

Exploration of any graph with n vertices by 1 agent requires
* Q(log n) bits of memory
[Fraigniaud, llcinkas, Peer, Pelc, Peleg, TCS '05]

* O(log n) bits of memory
[Reingold, JACM '08]

Exploration of any undirected graph with n vertices by k agents
requires

e Q(loglog n) agents if each agent has
at most O((log n)}~¢) bits of memory for ¢ > 0

* O(loglog n) agents with O(1) bits of memory

Thank youl



