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n = number of vertices of the undirected graph

k =1 agent:
* Q(log n) bits necessary [1]
* O(log n) bits sufficient [2]

k > 1 agents:

. Q(Iogab) n) agents with b bits each necessary [3]
e Q(loglog n) agents necessary [4]

* O(loglog n) agents with O(1) bits sufficient [4]

| Fraigniaud, llcinkas, Peer, Pelc, Peleg, TCS, 2005.
| Reingold, JACM, 2008.

| Rollik, Acta Informatica, 1980.

| Disser, H., Klimm, in preperation.
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Exploration algorithm - obstacles

Theorem (Disser, H., Klimm)

O(loglog n) agents with O(1) memory each can explore
any graph on at most n vertices in polynomial time.

Issues:

e high degree vertices with constant memory?
o transitions can depend on last edge used
e only constant number of actions?
o transitions can depend on states of other agents at same vertex
= k agents with O(1) bits of memory at least as powerful as
1 agent with O(k) bits of memory

O(loglog n) agents

half of the agents move togeth \us‘e half of the agents as markers

1 agent with ©(log log n) bits O(loglog n) pebbles
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Exploration algorithm - main idea

e assume: agent B can find closed walk w

e positions of pebbles 1 (marker agents) along w encode memory

Challenges:
e vertices appearing multiple times along w

e carrying the memory along while agent traverses graph
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Lemma (Disser, H., Klimm)

Agent with O(log a) bits of memory can
e move on closed walk

e visit at least min{a, n} vertices in any graph

Algorithm: Key properties:
. 1. memory doubles in each step
memory = constant # bits . . .
= starting with ¢ bits of memory
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Lemma (Disser, H., Klimm)

Agent with O(log a) bits of memory can
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e visit at least min{a, n} vertices in any graph

Algorithm: Key properties:
. 1. memory doubles in each step
memory = constant # bits . . .
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Lemma (Disser, H., Klimm)

Agent with O(log a) bits of memory can
e move on closed walk

e visit at least min{a, n} vertices in any graph

Algorithm: Key properties:
. 1. memory doubles in each step
memory = constant # bits . . .
= starting with ¢ bits of memory
l yields ¢ - 2'°€'°e" — c|og n bits

f%’ss ”?emzry tlok after log log n steps

n Coie e = log log n steps sufficient
for exploring graph

__ pebbles placed

MeMory = long closed walk 2. each step needs constant # pebbles

= O(loglog n) pebbles needed
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Lower bound - building block

A = set of k agents with s states each

Definition (Barrier)
B is r-barrier for A < no subset of A of at most r agents
can traverse B from u to v (or vice versa)

Observation

® k-barrier for A yields graph that agents do not explore
e Size of k-barrier = lower bound on # agents and states per agent
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e consider 1 agent in infinite 3-regular tree
= state determines next vertex

e state repeats after finite number of steps ~ close loop
= barrier for fixed starting state with O(s) vertices

e repeat construction for all k agents and all s states of every agent
= 1-barrier with O(k - s?) vertices
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Lower bound

Theorem (Disser, H., Klimm)

For any set A of k agents with s states each,
. . k .
there is a graph with O(s'%") vertices that A does not explore.
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Lower bound

~

\

Theorem (Disser, H., Klimm)

For any set A of k agents with s states each,
. . k .
there is a graph with O(s'%") vertices that A does not explore.

Theorem (Disser, H., Klimm)

Q(log log n) agents are necessary to explore any n vertex graph,

| if each agent has O((log n)=¢) bits of memory for & > 0.
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Summary

Exploration of any graph with n vertices by 1 agent requires
* Q(log n) bits of memory
[Fraigniaud, llcinkas, Peer, Pelc, Peleg, TCS '05]

* O(log n) bits of memory
[Reingold, JACM '08]
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Summary

Exploration of any graph with n vertices by 1 agent requires
* Q(log n) bits of memory
[Fraigniaud, llcinkas, Peer, Pelc, Peleg, TCS '05]

* O(log n) bits of memory
[Reingold, JACM '08]

Exploration of any undirected graph with n vertices by k agents
requires

e Q(loglog n) agents if each agent has
at most O((log n)}~¢) bits of memory for ¢ > 0

* O(loglog n) agents with O(1) bits of memory

Thank youl



