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Introduction and model

The octagonal Jubilee Maze at Symonds Yat - NotFromUtrecht - CC 3.0

• k agents in undirected, initially unknown graph

◦ vertices unlabeled, edges (locally) labeled

• goal: explore graph (every edge traversed by an agent) minimizing
◦ memory requirement
◦ number of agents

• every transition of agent depends on:

◦ label of incoming edge used last
◦ degree of current vertex
◦ state of the agent and of other agents at current location
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Known and new results

n = number of vertices of the undirected graph

k = 1 agent:
• Ω(log n) bits necessary [1]
• O(log n) bits sufficient [2]

k > 1 agents:
• Ω(log∗(2b) n) agents with b bits each necessary [3]

• Ω(log log n) agents necessary [4]
• O(log log n) agents with O(1) bits sufficient [4]

[1] Fraigniaud, Ilcinkas, Peer, Pelc, Peleg, TCS, 2005.
[2] Reingold, JACM, 2008.
[3] Rollik, Acta Informatica, 1980.
[4] Disser, H., Klimm, in preperation.
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Exploration algorithm - obstacles

Theorem (Disser, H., Klimm)
O(log log n) agents with O(1) memory each can explore
any graph on at most n vertices in polynomial time.

Issues:
• high degree vertices with constant memory?

◦ transitions can depend on last edge used

• only constant number of actions?

◦ transitions can depend on states of other agents at same vertex

⇒ k agents with O(1) bits of memory at least as powerful as
1 agent with O(k) bits of memory
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1 2 3 4 5
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Exploration algorithm - main idea

• assume: agent A can find closed walk ω

• positions of pebbles 1 (marker agents) along ω encode memory
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start 1 1
1 2 3
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1 2 3

0 0 0 011 1 1

0X
1

Challenges:
• vertices appearing multiple times along ω

• carrying the memory along while agent traverses graph
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Exploration algorithm

Theorem (Reingold, JACM ’08)
Agent with O(log n) bits can explore any graph with n vertices.

Lemma (Disser, H., Klimm)
Agent with O(log a) bits of memory can
• move on closed walk
• visit at least min{a, n} vertices in any graph
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Exploration algorithm

Lemma (Disser, H., Klimm)
Agent with O(log a) bits of memory can
• move on closed walk
• visit at least min{a, n} vertices in any graph

Algorithm:

memory = constant # bits

use memory to
find closed walk

memory =
pebbles placed

along closed walk

Key properties:

1. memory doubles in each step
⇒ starting with c bits of memory

yields c · 2log log n = c log n bits
after log log n steps

⇒ log log n steps sufficient
for exploring graph

2. each step needs constant # pebbles
⇒ O(log log n) pebbles needed
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Lower bound
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Lower bound - building block

A = set of k agents with s states each

Definition (Barrier)
B is r -barrier for A ⇔ no subset of A of at most r agents

can traverse B from u to v (or vice versa)
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Observation

• k-barrier for A yields graph that agents do not explore
• Size of k-barrier ⇒ lower bound on # agents and states per agent
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Construction of 1-barrier [Fraigniaud et al., TCS ’06]

• consider 1 agent in infinite 3-regular tree

⇒ state determines next vertex
• state repeats after finite number of steps  close loop
⇒ barrier for fixed starting state with O(s) vertices

• repeat construction for all k agents and all s states of every agent
⇒ 1-barrier with O(k · s2) vertices
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Lower bound - recursive construction

• r agent in infinite 3-regular tree

◦ configuration (= states + relative positions of agents)
determines next vertex

• Idea: replace edges by (r − 1)-barrier B
◦ all r agents close together
◦ configuration repeats  close loop (as for 1-barrier)
◦ repeat construction for all

(
k
r

)
subsets of r agents and all configs
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Lower bound

Theorem (Disser, H., Klimm)
For any set A of k agents with s states each,
there is a graph with O(s10k ) vertices that A does not explore.

Theorem (Disser, H., Klimm)
Ω(log log n) agents are necessary to explore any n vertex graph,
if each agent has O((log n)1−ε) bits of memory for ε > 0.
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Summary

Exploration of any graph with n vertices by 1 agent requires

• Ω(log n) bits of memory
[Fraigniaud, Ilcinkas, Peer, Pelc, Peleg, TCS ’05]

• O(log n) bits of memory
[Reingold, JACM ’08]

Exploration of any undirected graph with n vertices by k agents
requires
• Ω(log log n) agents if each agent has
at most O((log n)1−ε) bits of memory for ε > 0

• O(log log n) agents with O(1) bits of memory

Thank you!
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