Space-optimal collaborative exploration of undirected graphs

Yann Disser Jan Hackfeld Max Klimm

Humboldt-Universität zu Berlin

23.02.2018

The octagonal Jubilee Maze at Symonds Yat - NotFromUtrecht - CC 3.0

• k agents in undirected, initially unknown graph

k agents in undirected, initially unknown graph
 vertices unlabeled, edges (locally) labeled

- k agents in undirected, initially unknown graph
 - vertices unlabeled, edges (locally) labeled
- goal: explore graph (every edge traversed by an agent)

- k agents in undirected, initially unknown graph
 - vertices unlabeled, edges (locally) labeled
- goal: explore graph (every edge traversed by an agent)

- k agents in undirected, initially unknown graph
 - vertices unlabeled, edges (locally) labeled
- goal: explore graph (every edge traversed by an agent)

- k agents in undirected, initially unknown graph
 - vertices unlabeled, edges (locally) labeled
- goal: explore graph (every edge traversed by an agent)

- k agents in undirected, initially unknown graph
 - vertices unlabeled, edges (locally) labeled
- goal: explore graph (every edge traversed by an agent)

- k agents in undirected, initially unknown graph
 - vertices unlabeled, edges (locally) labeled
- goal: explore graph (every edge traversed by an agent)

- k agents in undirected, initially unknown graph
 - vertices unlabeled, edges (locally) labeled
- goal: explore graph (every edge traversed by an agent)

- k agents in undirected, initially unknown graph
 - vertices unlabeled, edges (locally) labeled
- goal: explore graph (every edge traversed by an agent)

- k agents in undirected, initially unknown graph
 - vertices unlabeled, edges (locally) labeled
- goal: explore graph (every edge traversed by an agent)

- k agents in undirected, initially unknown graph
 - vertices unlabeled, edges (locally) labeled
- goal: explore graph (every edge traversed by an agent)

- k agents in undirected, initially unknown graph
 - vertices unlabeled, edges (locally) labeled
- goal: explore graph (every edge traversed by an agent)

- k agents in undirected, initially unknown graph
 - vertices unlabeled, edges (locally) labeled
- goal: explore graph (every edge traversed by an agent) minimizing
 - memory requirement
 - number of agents

- k agents in undirected, initially unknown graph
 - vertices unlabeled, edges (locally) labeled
- goal: explore graph (every edge traversed by an agent) minimizing
 - memory requirement
 - number of agents
- every transition of agent depends on:

- k agents in undirected, initially unknown graph
 - vertices unlabeled, edges (locally) labeled
- goal: explore graph (every edge traversed by an agent) minimizing
 - memory requirement
 - number of agents
- every transition of agent depends on:
 - $\circ~$ label of incoming edge used last

- k agents in undirected, initially unknown graph
 - vertices unlabeled, edges (locally) labeled
- goal: explore graph (every edge traversed by an agent) minimizing
 - memory requirement
 - number of agents
- every transition of agent depends on:
 - $\circ~$ label of incoming edge used last
 - degree of current vertex

- k agents in undirected, initially unknown graph
 - vertices unlabeled, edges (locally) labeled
- goal: explore graph (every edge traversed by an agent) minimizing
 - memory requirement
 - number of agents
- every transition of agent depends on:
 - $\circ~$ label of incoming edge used last
 - degree of current vertex
 - $\circ\;$ state of the agent and of other agents at current location

- k agents in undirected, initially unknown graph
 - vertices unlabeled, edges (locally) labeled
- goal: explore graph (every edge traversed by an agent) minimizing
 - memory requirement
 - number of agents
- every transition of agent depends on:
 - $\circ~$ label of incoming edge used last
 - degree of current vertex
 - $\circ\;$ state of the agent and of other agents at current location

- k agents in undirected, initially unknown graph
 - vertices unlabeled, edges (locally) labeled
- goal: explore graph (every edge traversed by an agent) minimizing
 - memory requirement
 - number of agents
- every transition of agent depends on:
 - $\circ~$ label of incoming edge used last
 - degree of current vertex
 - $\circ\;$ state of the agent and of other agents at current location

- k agents in undirected, initially unknown graph
 - vertices unlabeled, edges (locally) labeled
- goal: explore graph (every edge traversed by an agent) minimizing
 - memory requirement
 - number of agents
- every transition of agent depends on:
 - $\circ~$ label of incoming edge used last
 - degree of current vertex
 - $\circ\;$ state of the agent and of other agents at current location

- k agents in undirected, initially unknown graph
 - vertices unlabeled, edges (locally) labeled
- goal: explore graph (every edge traversed by an agent) minimizing
 - memory requirement
 - number of agents
- every transition of agent depends on:
 - $\circ~$ label of incoming edge used last
 - degree of current vertex
 - $\circ\;$ state of the agent and of other agents at current location

- k agents in undirected, initially unknown graph
 - vertices unlabeled, edges (locally) labeled
- goal: explore graph (every edge traversed by an agent) minimizing
 - memory requirement
 - number of agents
- every transition of agent depends on:
 - $\circ~$ label of incoming edge used last
 - degree of current vertex
 - $\circ\;$ state of the agent and of other agents at current location

n = number of vertices of the undirected graph

- n = number of vertices of the undirected graph
- k = 1 agent:

- n = number of vertices of the undirected graph
- k = 1 agent:
- Ω(log n) bits necessary [1]

[1] Fraigniaud, Ilcinkas, Peer, Pelc, Peleg, TCS, 2005.

- n = number of vertices of the undirected graph
- k = 1 agent:
- Ω(log n) bits necessary [1]
- $\mathcal{O}(\log n)$ bits sufficient [2]

Fraigniaud, Ilcinkas, Peer, Pelc, Peleg, TCS, 2005.
 Reingold, JACM, 2008.

- n = number of vertices of the undirected graph
- k = 1 agent:
- Ω(log n) bits necessary [1]
- $\mathcal{O}(\log n)$ bits sufficient [2]
- k > 1 agents:

Fraigniaud, Ilcinkas, Peer, Pelc, Peleg, TCS, 2005.
 Reingold, JACM, 2008.

- n = number of vertices of the undirected graph
- k = 1 agent:
- Ω(log n) bits necessary [1]
- $\mathcal{O}(\log n)$ bits sufficient [2]
- k > 1 agents:
- $\Omega(\log^*_{(2^b)} n)$ agents with b bits each necessary [3]

- Fraigniaud, Ilcinkas, Peer, Pelc, Peleg, TCS, 2005.
 Reingold, JACM, 2008.
- [3] Rollik, Acta Informatica, 1980.

- n = number of vertices of the undirected graph
- k = 1 agent:
- Ω(log n) bits necessary [1]
- $\mathcal{O}(\log n)$ bits sufficient [2]
- k > 1 agents:
- $\Omega(\log_{(2^b)}^* n)$ agents with b bits each necessary [3]
- Ω(log log n) agents necessary [4]

[1] Fraigniaud, Ilcinkas, Peer, Pelc, Peleg, TCS, 2005.

- [2] Reingold, JACM, 2008.
- [3] Rollik, Acta Informatica, 1980.
- [4] Disser, H., Klimm, in preperation.

n = number of vertices of the undirected graph

k = 1 agent:

- Ω(log n) bits necessary [1]
- $\mathcal{O}(\log n)$ bits sufficient [2]
- k > 1 agents:
- $\Omega(\log^*_{(2^b)} n)$ agents with b bits each necessary [3]
- Ω(log log n) agents necessary [4]
- $\mathcal{O}(\log \log n)$ agents with $\mathcal{O}(1)$ bits sufficient [4]
- [1] Fraigniaud, Ilcinkas, Peer, Pelc, Peleg, TCS, 2005.
- [2] Reingold, JACM, 2008.
- [3] Rollik, Acta Informatica, 1980.
- [4] Disser, H., Klimm, in preperation.

Upper bound

Theorem (Disser, H., Klimm)

 $O(\log \log n)$ agents with O(1) memory each can explore any graph on at most n vertices in polynomial time.

Theorem (Disser, H., Klimm)

 $O(\log \log n)$ agents with O(1) memory each can explore any graph on at most n vertices in polynomial time.

Issues:

• high degree vertices with constant memory?

$O(\log \log n)$ agents with O(1) memory each can explore any graph on at most n vertices in polynomial time.

- high degree vertices with constant memory?
 - $\circ\,$ transitions can depend on last edge used

 $O(\log \log n)$ agents with O(1) memory each can explore any graph on at most n vertices in polynomial time.

- high degree vertices with constant memory?
 - $\circ\,$ transitions can depend on last edge used

 $O(\log \log n)$ agents with O(1) memory each can explore any graph on at most n vertices in polynomial time.

- high degree vertices with constant memory?
 - $\circ\,$ transitions can depend on last edge used

 $O(\log \log n)$ agents with O(1) memory each can explore any graph on at most n vertices in polynomial time.

- high degree vertices with constant memory?
 - $\circ\,$ transitions can depend on last edge used

 $O(\log \log n)$ agents with O(1) memory each can explore any graph on at most n vertices in polynomial time.

- high degree vertices with constant memory?
 - $\circ\,$ transitions can depend on last edge used

 $O(\log \log n)$ agents with O(1) memory each can explore any graph on at most n vertices in polynomial time.

- high degree vertices with constant memory?
 - $\circ\,$ transitions can depend on last edge used

 $O(\log \log n)$ agents with O(1) memory each can explore any graph on at most n vertices in polynomial time.

- high degree vertices with constant memory?
 - $\circ\,$ transitions can depend on last edge used

 $O(\log \log n)$ agents with O(1) memory each can explore any graph on at most n vertices in polynomial time.

- high degree vertices with constant memory?
 - $\circ\,$ transitions can depend on last edge used

 $O(\log \log n)$ agents with O(1) memory each can explore any graph on at most n vertices in polynomial time.

- high degree vertices with constant memory?
 - transitions can depend on last edge used
- only constant number of actions?

 $O(\log \log n)$ agents with O(1) memory each can explore any graph on at most n vertices in polynomial time.

- high degree vertices with constant memory?
 - transitions can depend on last edge used
- only constant number of actions?
 - transitions can depend on states of other agents at same vertex

 $O(\log \log n)$ agents with O(1) memory each can explore any graph on at most n vertices in polynomial time.

- high degree vertices with constant memory?
 - transitions can depend on last edge used
- only constant number of actions?
 - transitions can depend on states of other agents at same vertex
 - \Rightarrow k agents with $\mathcal{O}(1)$ bits of memory at least as powerful as
 - 1 agent with $\mathcal{O}(k)$ bits of memory

 $O(\log \log n)$ agents with O(1) memory each can explore any graph on at most n vertices in polynomial time.

- high degree vertices with constant memory?
 - transitions can depend on last edge used
- only constant number of actions?
 - transitions can depend on states of other agents at same vertex
 - \Rightarrow k agents with $\mathcal{O}(1)$ bits of memory at least as powerful as
 - 1 agent with $\mathcal{O}(k)$ bits of memory

Jan Hackfeld. Space-optimal collaborative exploration

• assume: agent \blacksquare can find closed walk ω

- assume: agent \blacksquare can find closed walk ω
- positions of pebbles 1 (marker agents) along ω encode memory

- assume: agent \blacksquare can find closed walk ω
- positions of pebbles 1 (marker agents) along ω encode memory

- assume: agent \blacksquare can find closed walk ω
- positions of pebbles 1 (marker agents) along ω encode memory

- assume: agent \blacksquare can find closed walk ω
- positions of pebbles 1 (marker agents) along ω encode memory

- assume: agent \blacksquare can find closed walk ω
- positions of pebbles 1 (marker agents) along ω encode memory

- assume: agent \blacksquare can find closed walk ω
- positions of pebbles 1 (marker agents) along ω encode memory

- assume: agent \blacksquare can find closed walk ω
- positions of pebbles 1 (marker agents) along ω encode memory

- assume: agent \blacksquare can find closed walk ω
- positions of pebbles 1 (marker agents) along ω encode memory

Challenges:

- vertices appearing multiple times along $\boldsymbol{\omega}$

Jan Hackfeld. Space-optimal collaborative exploration

- assume: agent \blacksquare can find closed walk ω
- positions of pebbles 1 (marker agents) along ω encode memory

Challenges:

- vertices appearing multiple times along $\boldsymbol{\omega}$

• carrying the memory along while agent traverses graph Jan Hackfeld. Space-optimal collaborative exploration

Theorem (Reingold, JACM '08)

Agent with $\mathcal{O}(\log n)$ bits can explore any graph with n vertices.

Theorem (Reingold, JACM '08)

Agent with $O(\log n)$ bits can explore any graph with n vertices.

Lemma (Disser, H., Klimm)

- move on closed walk
- visit at least min{a, n} vertices in any graph

Lemma (Disser, H., Klimm)

- move on closed walk
- visit at least min{a, n} vertices in any graph

Lemma (Disser, H., Klimm)

- move on closed walk
- visit at least min{a, n} vertices in any graph

Lemma (Disser, H., Klimm)

- move on closed walk
- visit at least min{a, n} vertices in any graph

Lemma (Disser, H., Klimm)

- move on closed walk
- visit at least min{a, n} vertices in any graph

Lemma (Disser, H., Klimm)

- move on closed walk
- visit at least min{a, n} vertices in any graph

Lemma (Disser, H., Klimm)

- move on closed walk
- visit at least min{a, n} vertices in any graph

Lemma (Disser, H., Klimm)

Agent with $\mathcal{O}(\log a)$ bits of memory can

- move on closed walk
- visit at least min{a, n} vertices in any graph

Algorithm:

memory = constant # bits

Lemma (Disser, H., Klimm)

Agent with $\mathcal{O}(\log a)$ bits of memory can

- move on closed walk
- visit at least min{a, n} vertices in any graph

Algorithm:

Lemma (Disser, H., Klimm)

Agent with $\mathcal{O}(\log a)$ bits of memory can

- move on closed walk
- visit at least min{a, n} vertices in any graph

Algorithm:

Lemma (Disser, H., Klimm)

Agent with $\mathcal{O}(\log a)$ bits of memory can

- move on closed walk
- visit at least min{a, n} vertices in any graph

Algorithm:

Lemma (Disser, H., Klimm)

Agent with $\mathcal{O}(\log a)$ bits of memory can

- move on closed walk
- visit at least min{a, n} vertices in any graph

Algorithm:

Key properties:

1. memory doubles in each step
Lemma (Disser, H., Klimm)

Agent with $\mathcal{O}(\log a)$ bits of memory can

- move on closed walk
- visit at least min{a, n} vertices in any graph

Algorithm:

Key properties:

1. memory doubles in each step \Rightarrow starting with *c* bits of memory yields $c \cdot 2^{\log \log n} = c \log n$ bits after log log *n* steps

Lemma (Disser, H., Klimm)

Agent with $\mathcal{O}(\log a)$ bits of memory can

- move on closed walk
- visit at least min{a, n} vertices in any graph

Algorithm:

Key properties:

- 1. memory doubles in each step \Rightarrow starting with *c* bits of memory yields $c \cdot 2^{\log \log n} = c \log n$ bits after log log *n* steps
 - $\Rightarrow \log \log n$ steps sufficient for exploring graph

Lemma (Disser, H., Klimm)

Agent with $\mathcal{O}(\log a)$ bits of memory can

- move on closed walk
- visit at least min{a, n} vertices in any graph

Algorithm:

Key properties:

- 1. memory doubles in each step \Rightarrow starting with *c* bits of memory yields $c \cdot 2^{\log \log n} = c \log n$ bits after log log *n* steps
 - $\Rightarrow \log \log n$ steps sufficient for exploring graph
- 2. each step needs constant # pebbles

Lemma (Disser, H., Klimm)

Agent with $\mathcal{O}(\log a)$ bits of memory can

- move on closed walk
- visit at least min{a, n} vertices in any graph

Algorithm:

Key properties:

- 1. memory doubles in each step \Rightarrow starting with *c* bits of memory yields $c \cdot 2^{\log \log n} = c \log n$ bits after log log *n* steps
 - $\Rightarrow \log \log n$ steps sufficient for exploring graph
- 2. each step needs constant # pebbles $\Rightarrow \mathcal{O}(\log \log n)$ pebbles needed

Lower bound

Jan Hackfeld. Space-optimal collaborative exploration

 $\mathcal{A} = \mathsf{set} \mathsf{ of} \mathsf{ k} \mathsf{ agents} \mathsf{ with } \mathsf{ s} \mathsf{ states} \mathsf{ each}$

 $\mathcal{A} = \mathsf{set} \mathsf{ of} \mathsf{ k} \mathsf{ agents} \mathsf{ with } \mathsf{ s tates each}$

Definition (Barrier)

 $\mathcal{A} = \text{set of } k \text{ agents with } s \text{ states each}$

Definition (Barrier)

 $\mathcal{A} = \mathsf{set} \mathsf{ of} \mathsf{ k} \mathsf{ agents} \mathsf{ with } \mathsf{ s tates each}$

Definition (Barrier)

 $\mathcal{A} = \mathsf{set} \mathsf{ of} \mathsf{ k} \mathsf{ agents} \mathsf{ with } \mathsf{ s tates each}$

Definition (Barrier)

 $\mathcal{A} = \mathsf{set} \mathsf{ of} \mathsf{ k} \mathsf{ agents} \mathsf{ with } \mathsf{ s tates each}$

Definition (Barrier)

 $\mathcal{A} = \mathsf{set} \mathsf{ of} \mathsf{ k} \mathsf{ agents} \mathsf{ with } \mathsf{ s tates each}$

Definition (Barrier)

 $\mathcal{A} = \mathsf{set} \mathsf{ of} \mathsf{ k} \mathsf{ agents} \mathsf{ with } \mathsf{ s tates each}$

Definition (Barrier)

 $\mathcal{A} = \text{set of } k \text{ agents with } s \text{ states each}$

Definition (Barrier)

 $\mathcal{A} = \mathsf{set} \mathsf{ of} \mathsf{ k} \mathsf{ agents} \mathsf{ with } \mathsf{ s tates each}$

Definition (Barrier)

 $\mathcal{A} = \mathsf{set} \mathsf{ of} \mathsf{ k} \mathsf{ agents} \mathsf{ with } \mathsf{ s tates each}$

Definition (Barrier)

 $\mathcal{A} = \mathsf{set} \mathsf{ of} \mathsf{ k} \mathsf{ agents} \mathsf{ with } \mathsf{ s tates each}$

Definition (Barrier)

 $\mathcal{A} = \mathsf{set} \mathsf{ of} \mathsf{ k} \mathsf{ agents} \mathsf{ with } \mathsf{ s tates each}$

Definition (Barrier)

 $\mathcal{A} = \mathsf{set} \mathsf{ of} \mathsf{ k} \mathsf{ agents} \mathsf{ with } \mathsf{ s tates each}$

Definition (Barrier)

 $\mathcal{A} = \mathsf{set} \mathsf{ of} \mathsf{ k} \mathsf{ agents} \mathsf{ with } \mathsf{ s tates each}$

Definition (Barrier)

 $\mathcal{A} = \mathsf{set} \mathsf{ of} \mathsf{ k} \mathsf{ agents} \mathsf{ with } \mathsf{ s tates each}$

Definition (Barrier)

 $\mathcal{A} = \mathsf{set} \mathsf{ of} \mathsf{ k} \mathsf{ agents} \mathsf{ with } \mathsf{ s tates each}$

Definition (Barrier)

 $\mathcal{A} = \text{set of } k \text{ agents with } s \text{ states each}$

Definition (Barrier)

 $\begin{array}{l} B \text{ is } \textbf{\textit{r-barrier}} \text{ for } \mathcal{A} \Leftrightarrow \text{no subset of } \mathcal{A} \text{ of at most } \textbf{\textit{r}} \text{ agents} \\ \text{ can traverse } B \text{ from } u \text{ to } v \text{ (or vice versa)} \end{array}$

Observation

 $\mathcal{A} = \text{set of } k \text{ agents with } s \text{ states each}$

Definition (Barrier)

 $\begin{array}{l} B \text{ is } \textbf{\textit{r}-barrier} \text{ for } \mathcal{A} \Leftrightarrow \text{no subset of } \mathcal{A} \text{ of at most } \textbf{\textit{r} agents} \\ \text{ can traverse } B \text{ from } \textbf{\textit{u}} \text{ to } \textbf{\textit{v}} \text{ (or vice versa)} \end{array} \end{array}$

Observation

• *k*-barrier for A yields graph that agents do **not** explore

Jan Hackfeld. Space-optimal collaborative exploration

 $\mathcal{A} = \text{set of } k \text{ agents with } s \text{ states each}$

Definition (Barrier)

 $\begin{array}{l} B \text{ is } \textbf{\textit{r-barrier}} \text{ for } \mathcal{A} \Leftrightarrow \text{no subset of } \mathcal{A} \text{ of at most } \textbf{\textit{r}} \text{ agents} \\ \text{ can traverse } B \text{ from } u \text{ to } v \text{ (or vice versa)} \end{array}$

Observation

- k-barrier for A yields graph that agents do not explore
- Size of k-barrier \Rightarrow lower bound on # agents and states per agent

Jan Hackfeld. Space-optimal collaborative exploration

• consider 1 agent in infinite 3-regular tree

- consider 1 agent in infinite 3-regular tree
 - \Rightarrow state determines next vertex

- consider 1 agent in infinite 3-regular tree
 - \Rightarrow state determines next vertex

- consider 1 agent in infinite 3-regular tree
 - \Rightarrow state determines next vertex

- consider 1 agent in infinite 3-regular tree
 - \Rightarrow state determines next vertex

- consider 1 agent in infinite 3-regular tree
 ⇒ state determines next vertex
- state repeats after finite number of steps

- consider 1 agent in infinite 3-regular tree
 - \Rightarrow state determines next vertex
- state repeats after finite number of steps →→ close loop

- consider 1 agent in infinite 3-regular tree
 - \Rightarrow state determines next vertex
- state repeats after finite number of steps →→ close loop

- consider 1 agent in infinite 3-regular tree
 - \Rightarrow state determines next vertex
- state repeats after finite number of steps →→ close loop

- consider 1 agent in infinite 3-regular tree
 - \Rightarrow state determines next vertex
- state repeats after finite number of steps →→ close loop

- consider 1 agent in infinite 3-regular tree
 - \Rightarrow state determines next vertex
- state repeats after finite number of steps →→ close loop

- consider 1 agent in infinite 3-regular tree
 ⇒ state determines next vertex
- state repeats after finite number of steps → close loop
 ⇒ barrier for fixed starting state with O(s) vertices

- consider 1 agent in infinite 3-regular tree
 ⇒ state determines next vertex
- state repeats after finite number of steps → close loop
 ⇒ barrier for fixed starting state with O(s) vertices
- repeat construction for all k agents and all s states of every agent

- consider 1 agent in infinite 3-regular tree
 ⇒ state determines next vertex
- state repeats after finite number of steps → close loop
 ⇒ barrier for fixed starting state with O(s) vertices
- repeat construction for all k agents and all s states of every agent

- consider 1 agent in infinite 3-regular tree
 ⇒ state determines next vertex
- state repeats after finite number of steps → close loop
 ⇒ barrier for fixed starting state with O(s) vertices
- repeat construction for all k agents and all s states of every agent \Rightarrow 1-barrier with $\mathcal{O}(k \cdot s^2)$ vertices

• r agent in infinite 3-regular tree

- r agent in infinite 3-regular tree
 - configuration (= states + relative positions of agents) determines next vertex

- r agent in infinite 3-regular tree
 - configuration (= states + relative positions of agents) determines next vertex

- r agent in infinite 3-regular tree
 - configuration (= states + relative positions of agents) determines next vertex

- r agent in infinite 3-regular tree
 - configuration (= states + relative positions of agents) determines next vertex

- r agent in infinite 3-regular tree
 - configuration (= states + relative positions of agents) determines next vertex

- r agent in infinite 3-regular tree
 - configuration (= states + relative positions of agents) determines next vertex

- r agent in infinite 3-regular tree
 - configuration (= states + relative positions of agents) determines next vertex

- r agent in infinite 3-regular tree
 - configuration (= states + relative positions of agents) determines next vertex
- Idea: replace edges by (r-1)-barrier B

- r agent in infinite 3-regular tree
 - configuration (= states + relative positions of agents) determines next vertex
- Idea: replace edges by (r-1)-barrier B

- r agent in infinite 3-regular tree
 - configuration (= states + relative positions of agents) determines next vertex
- Idea: replace edges by (r-1)-barrier B

- r agent in infinite 3-regular tree
 - configuration (= states + relative positions of agents) determines next vertex
- Idea: replace edges by (r-1)-barrier B

- r agent in infinite 3-regular tree
 - configuration (= states + relative positions of agents) determines next vertex
- Idea: replace edges by (r-1)-barrier B
 - all r agents close together

- r agent in infinite 3-regular tree
 - configuration (= states + relative positions of agents) determines next vertex
- Idea: replace edges by (r-1)-barrier B
 - all r agents close together
 - configuration repeats

- r agent in infinite 3-regular tree
 - configuration (= states + relative positions of agents) determines next vertex
- Idea: replace edges by (r-1)-barrier B
 - all r agents close together
 - configuration repeats → close loop (as for 1-barrier)

- r agent in infinite 3-regular tree
 - configuration (= states + relative positions of agents) determines next vertex
- Idea: replace edges by (r-1)-barrier B
 - all r agents close together
 - configuration repeats → close loop (as for 1-barrier)

- r agent in infinite 3-regular tree
 - configuration (= states + relative positions of agents) determines next vertex
- Idea: replace edges by (r-1)-barrier B
 - all r agents close together
 - configuration repeats → close loop (as for 1-barrier)

- r agent in infinite 3-regular tree
 - configuration (= states + relative positions of agents) determines next vertex
- Idea: replace edges by (r-1)-barrier B
 - all r agents close together
 - configuration repeats → close loop (as for 1-barrier)

- r agent in infinite 3-regular tree
 - configuration (= states + relative positions of agents) determines next vertex
- Idea: replace edges by (r-1)-barrier B
 - all r agents close together
 - configuration repeats → close loop (as for 1-barrier)

- r agent in infinite 3-regular tree
 - configuration (= states + relative positions of agents) determines next vertex
- Idea: replace edges by (r-1)-barrier B
 - all r agents close together
 - configuration repeats \rightsquigarrow close loop (as for 1-barrier)
 - repeat construction for all $\binom{k}{r}$ subsets of r agents and all configs

- r agent in infinite 3-regular tree
 - configuration (= states + relative positions of agents) determines next vertex
- Idea: replace edges by (r-1)-barrier B
 - all r agents close together
 - configuration repeats \rightsquigarrow close loop (as for 1-barrier)
 - repeat construction for all $\binom{k}{r}$ subsets of r agents and all configs

Jan Hackfeld. Space-optimal collaborative exploration

Theorem (Disser, H., Klimm)

For any set A of k agents with s states each, there is a graph with $\mathcal{O}(s^{10^k})$ vertices that A does not explore.

Theorem (Disser, H., Klimm)

For any set A of k agents with s states each, there is a graph with $\mathcal{O}(s^{10^k})$ vertices that A does not explore.

Theorem (Disser, H., Klimm)

 $\Omega(\log \log n)$ agents are necessary to explore any n vertex graph, if each agent has $\mathcal{O}((\log n)^{1-\varepsilon})$ bits of memory for $\varepsilon > 0$.

Summary

Exploration of any graph with n vertices by 1 agent requires

- Ω(log n) bits of memory
 [Fraigniaud, Ilcinkas, Peer, Pelc, Peleg, TCS '05]
- $\mathcal{O}(\log n)$ bits of memory [Reingold, JACM '08]

Summary

Exploration of any graph with n vertices by 1 agent requires

- Ω(log n) bits of memory
 [Fraigniaud, Ilcinkas, Peer, Pelc, Peleg, TCS '05]
- $\mathcal{O}(\log n)$ bits of memory [Reingold, JACM '08]

Exploration of any undirected graph with n vertices by k agents requires

- Ω(log log n) agents if each agent has at most O((log n)^{1-ε}) bits of memory for ε > 0
- $\mathcal{O}(\log \log n)$ agents with $\mathcal{O}(1)$ bits of memory

Summary

Exploration of any graph with n vertices by 1 agent requires

- Ω(log n) bits of memory
 [Fraigniaud, Ilcinkas, Peer, Pelc, Peleg, TCS '05]
- $\mathcal{O}(\log n)$ bits of memory [Reingold, JACM '08]

Exploration of any undirected graph with n vertices by k agents requires

- Ω(log log n) agents if each agent has at most O((log n)^{1-ε}) bits of memory for ε > 0
- $\mathcal{O}(\log \log n)$ agents with $\mathcal{O}(1)$ bits of memory

Thank you!

Jan Hackfeld. Space-optimal collaborative exploration