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Compact surfaces

Theorem
Any connected compact surface is homeomorphic to:

1. The sphere (abb~1a™1).
2. The connected sum of g tori (aba=1b71), for g > 1.

3. The connected sum of k real projective planes (abab), for
k>1.

/
&

P#P = K = abab™!



Compact connected orientable surfaces

g=0 I<gs3

Image source: Henry Segerman

Compact connected orientable surfaces are classified by their
genus g.



g = 1. Weierstrass's elliptic functions

AN={mwi+nwy :mneZ}CC, T=wjwi, (1)>0

: 1 1 1
p(z, WlaWZ) =2 + Zn2—|—m27$0 {(z+mw1+nw2)2 }

- (mw1—|—nw2)2

Ep: 9%(z) = 40%(2) — g2p(2) — 83, &(w1,w2), g3(w1,w2) € C
C/N~ EA(C), z= (p(2),¢'(2))

...............

.........

Y2 =4X?— g X — g5, A=g}—27g; #0



Hyperbolic geometry

P(C) = CU {00}, complex projective line,  Riemann sphere
_|2® € SL(2,C), a(z) = az+ b Mobius transformations
a=|_ C), alz) =

PSL(2,C) = SL(2,C)/{=I2}, conformal transformations of P*(C)
A model for the hyperbolic plane:

H={z=x+iyeC:y >0}

2
arc cosh <1 + ‘le2> ‘
2212

B dx? + dy?
IS
PSL(2,R) = SL(2,R)/{%I2}, hyperbolic motions of H

d(Zl, 22) =




The Poincaré disk model for the hyperbolic plane

D,={z€C:zz<r?}, reR, r>0
a br .
Aut(Dr)_{[b/r a] ca,beC, |b| < \a|}/R.

2x X2—|—y2—1>
H~D, z=x+iy+—z=r ,
' g (Framm Ty

geodesics in ‘H geodesics in D,



Types of conformal isometries of H

a= [i b] € SL(2,R), « # £I». Fixed points:

d
a—d+/(a+d)?>—4
2c

az) =z z=

hyperbolic: [tr(a)| > 2, PYC)* = {z1,2}, z1,2 € P}(R)
elliptic: ltr(a)| <2, PYC)*={z,z}, z€H, elliptic
parabolic:  tr(a) = +£2, P}(C)* = {z}, z € PY(R), cusp

Conjugacy classes in SL(2,R):

A cosf sind +1 A
[ /\1}’)\7&1’ [—sin@ cos@}’eeR\zﬂz’ [O il}



Fuchsian groups and Riemann surfaces

I CSL(2,R) discrete subgroup, T C PSL(2,R)
Pr set of cusps, H*=HUPr, w: H* = T\H*
MH* ~ X(MN)(C) compact Riemann surface

o0 if z is a cusp
ir, = €r(z) > 1 if z is elliptic
1 otherwise

!

MCr [T:Tl=n¢: X(M) = X, ewe=Tow): Twl
Hurwitz formula: 2g" —2 = n(2g — 2) + 3, ex(r)(ewp — 1)

Laszlo Fuchs obtained his PhD in 1858 under Ernst Kummer in Berlin.



Fundamental domains

I Fuchsian group, F C H connected domain

(i) H=U,erv(F),

(i) F=U, Uopenset, U =int(F),

(i) v(U)NU =10, foranyyel,vy#=+l

V1

AR,

0 SL(2,Z) = (S = {

fundamental domain for the modular group

0 1
-1 0

|

1
0



Hyperbolic tesselations by SL(2,7Z)

T T I T T*
T T - — T —
T°28 \T‘S s \ S \Ts
frSTS T ST\\ / STS | ST 4‘ TST \\ /K ST \\

—\ o\ o —K—
/ v/ VN Y Y

,,,,, 58 T TR SR A N O, Y A T J\




[-Automorphic forms

:[ ]EGL+2R) keZ, jla,z):==cz+d
CH = PL O (flka)(2) = det(a)k/zj(a,z)_kf(az), zeH
Definition

A meromorphic function f(z) on H is called a [-automorphic form
of weight k if it is meromorphic at all cusps and satisfies f|,y = f,

forall y €T.

Aom(T) =~ QT(X(T)), f—wr, f(2)(dz2)" =wrom

’ Ao(I) = C(X(I)) field of M'-automorphic functions




g = 0. Klein's j invariant
I = SL(2,Z) modular group, C(X(SL(2,Z))) = C())
82 =603 n)£0,0)(m+ nz)~™*  modular form of weight 4

83 =140 1, n)£(0,0) (M + nz)~®  modular form of weight 6

3
A =gd—21g2 € Sp(T), Jj(z) = 1728%2 c Ao(), zeH

|
1
S L «aj(q):5+744+196884q+0(q2)

2mi

q = €2™7 local parameter, j(e3 ) =0, j(i)= 1728



Schwarzian derivatives

Theorem

(a) The derivative f’ of an automorphic function f is an
automorphic form of weight 2.

(b) If f is an automorphic form of weight k, then
K" — (k + 1)(f")?
is an automorphic form of weight 2k + 4.
Definition
The Schwarzian derivative with respect to z, {w, z}, of a

non-constant smooth function w(z) is defined by

wiw — 3(W”)2 . dw
o ="y — "%

Hermann Schwarz obtained his PhD in 1864 under Kummer and Weierstrass in Berlin.



Automorphic derivatives

Definition
The l-automorphic derivative {w, z}r of a non-constant smooth
function w(z) with respect to z is defined by

{WZ} /_diw
{w, z}r = , W=

Proposition
If w(z) is a [-automorphic function on H, so is

B ow'w'" — 3(W//)2 B
{w, z}r = 2w = —{z,w}.

That is: {w,y(z)}r = {w, z}r, forall y €T.



Connection with second order linear differential equations

Theorem (Poincaré)

Let I' be a Fuchsian group of the first kind, w(z) € Ap(l') a
non-constant automorphic function and {(w) be its inverse
function. Then ()
mw
W) = aw)
where {n1,m2} is a fundamental system of solutions of the ordinary
differential equation

d277
= {w, z}rn.

Moreover, {w, z}r is an algebraic function of w.



The genus zero case: Hauptmoduln

If X(T') is of genus g = 0, then C(X(I')) = C(w) where w(z) is a
Hauptmodul for X ().

Thus there is a rational function R(w) € C(w) such that w(z) is a
solution of the third order differential equation

{W7Z}|_ = R(W)
We can obtain ((w) by integrating the linear differential equation

d?*n

Remark
A key point is always the computation of R(w).



How to obtain the Hauptmodul j?

vl

w0 sL(2,z)\#* 22 pr(C)

1
j(z) = 4 + 744 + 196 884q + 2149376022 + O(q°)

g :
= 1728K2’ g=e"7  zecH



Dedekind's valence function (1877)

d’> [dv
[v.2] = 75‘, dvz\/; =4z, visL2z)
-

v(i)=1, v(eF)=0, v(oc)=o0

1 dv 1 dv 1dv
A-vPd \?Rdz vz

Fuchs’ theory
3 8 23 23b

R(v) = ——> 4 S 4 2 =9
v) HI-v)E 92 T36—v) T 36v

36v2 — 41v + 32

36v2(1 — v)?
2 v
vl =RW). G3=gRWn 2=



Dedekind’s valence function versus Klein's j invariant

The function

1
1 _1{dv\?2
z(v) ;= const.v™3(1—v)" % (dz)

satisfies the hypergeometric differential equation

d?z 2 Tv\ dz z
1l—v)— 4 (2 ) =2 _
-vigat <3 6 > dv 14a 0

whose solutions are c1m1(v) + can2(v), where

m(v) = F(1/12,1/12,2/3;v), ma(v) = F(1/12,1/12,1/2;1—v)

| 1728v(2) = j(2) |




Hypergeometric differential equation

z(l—z)d—""—i—[c—(a+b+1)z] —abw =0

It has regular singular points at 0, 1, and infinity.
Its solutions are obtained in terms of the hypergeometric series

F(a,b,c;z) = 2 (azzg[:)ni’;, |z| <1, (Wallis,1655)

where

() = 1, n=20
Vn = g(g+1)---(g+n—-1), n>0

denotes de Pochhammer symbol.

Leo Pochhammer obtained his PhD in 1863 under Kummer in Berlin.
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The Fermat curves Fy
N > 4 a positive integer
Fy: XNyyN=2zN
deg(Fn) = N, g(N) = (N - 1)(N —2)/2
D,={zeC:zz<r?*
A a Fuchsian triangle group of signature (N, N, N) acting on D,:

A=(a,f,y:a"=p"=7"=1d, apy=1d)

Theorem
A hyperbolic model for the Fermat curve Fpy is given through an

isomorphism
MD; ~ Fy(C),

where [ = [A, A] denotes the commutator subgroup of A.



First idea of the proof




The Fermat curves as Riemann surfaces

We aim an explicit determination of affine coordinate functions
sf(z; N), cf(z; N), meromorphic on D} and I'-automorphic,
realizing the isomorphism

MN\D; ~ Fy(C).
Thus, we shall have
stN(z; N) +ctN(z;N) =1, forallzeT\D}, z ¢ S,

for a certain finite subset S of M\D;}.

When it is not necessary to state the value of N explicitly, the
Fermat functions sf(z; N),cf(z; N) will be written sf(z), cf(z).



The automorphism group of D,

Proposition
The group Aut(D,) consists of the following homographic
transformations

_ 2ia ZT 2
f(Z)—r elam, ZEDr,

fora € R and |z| < r.
The group Aut(D,) also admits the equivalent description

Ay~ 1|2 Pliabec, b <ol /re

T b/r a| ’ '

All groups Aut(D,) are conjugate in PGL(2,C). By considering
the homothety h,(z) = rz, we have

Aut(D,) = h,Aut(D;y)h L.



The triangle group A
Tn = (A, B, C), Ty = (A, B, ("), interior angles (7 /N, n/N,m/N)

«, 3, v rotations with center A, B, C and angle 27 /N

A={aB,y:aV=p"=4"=1d, apy=1d)

Proposition
The quadrilateral @ = AC'BC is a fundamental domain for the

action of A in D,.
The quotient C = A\D, is a compact and connected Riemann
surface of genus zero.




An involution

Proposition

Let (y = €®™/N and t = \/2cos(n/N) — 1.

(i) The vertices of the triangles Ty, Ty, are
A=0, B=rt, C:C2NB7 C,:EZNB'

(ii) The involution 7(z) = (B’%fr defined by the matrix

[,

is an element of Aut(D,) which interchanges the points A
and B, and the points C and C'.



Coverings of degree N of C = A\D,

oa: A —Z/NZ, a—1, [+—0
Ap = ker(pa) , subgroup generated by 5 and [A, A]
Proposition
(a) The hyperbolic regular polygon P = UfV:BlQ,-, Q; = a'(Q),
is a fundamental domain for the action of Ay4.

(b) The Riemann surface C4 = Aa\D, is a covering of degree N
of C of genus zero.

(c) Aut(Ca|C) ~ A/Aa = (@), a cyclic group of order N.




Function fields for C4, Cg

(d) There exists a Aa-automorphic function sf(z) = sf(z; N),
defined on D,, establishing an analytic isomorphism

sf : Ca = Ap\D, — PL(C)

and such that sf(A; N) = 0,sf(B; N) = 1,sf(C; N) = co. The
function field C(Ca) is isomorphic to C(sf).

(e) There exists a Ag-automorphic function cf(z) = cf(z; N),
defined on D,, establishing an analytic isomorphism between

cf : Cg = Ag\D, — PL(C)

and such that cf(A; N) = 1,cf(B; N) = 0,cf(C; N) = co. The
function field C(Cg) is isomorphic to C(cf).



Algebraic dependence of sfand cf

Proposition

Let 7 be the involution which interchanges the points A and B,
and the points C and C’. Then

(a) sfor =cf.

(b) For some r,s € Z, coprime with N, we have
sf o v = (py sf, cf o8 =y cf.

(c) C(C) = C(sfN) = C(cfN).
(d) Forany z € C, z+# C, we have that

stN(z) +cfV(z) = 1.



A fundamental domain for [A, A]

¢:A—Z/NZ x Z/NZ, o+ (1,0), B (0,1)
ker(p) = [A,A] =: Ty
Proposition
Let Cy :=Tn\D, and Hy = A/Ty = Aut(Cy | C). Then
(a) The elements {B{ai :{\L';lo represent the classes in Hy.

(b) Let Q;; = B{ai(Q) = 6{(@;) = a/(QY), then the polygon
Pn = U,’.VJ;l()Q,-J is a fundamental domain for Iy.




The function field of the Fermat curve

Proposition
We have that Cy ~ Fy(C) as Riemann surfaces. Thus,

C(Fn) = C(sf, cf).

The functions (sf, cf) parametrize the Fermat curve Fy and are
I"y-automorphic.




Computing the Schwarzian differential equation

w = f(z)

1 2VF" () — 3F"(2)2

Ds(f(z),z) == 2f'(2)f f(/(i)z 3f"(z)
Di(f(z), z) :== Ds(f(2),2)

f1(z)? = _DS(f_l(W)aW)

Proposition

The isotropy groups of the points A, B, C under the action of A are
(), (B), (7), respectively. All of them are cyclic groups of order N.

C(C) = C(stN) = C(cfN)



Computing the Schwarzian differential equation

Proposition
The function sfV(z; N) is a solution of the differential equation

where

1—-1/N? 1—-1/N? ma mg

(w—wa)2  (w—wg)? w—wy W—WB;

R(w) =

and

wa = stV (A) =0, stN(B) = wg = 1, we = stN(C) = oo,

ma, mg are two constants determined by the local conditions at
the point C, where sf"V takes the value oo:

ma—+mg =20
mAWA+mBWB+1—1/N2:0 '



Computing the Schwarzian differential equation

Thus, mg = —mg =1— N2 and

(N—=1)(N+1)(w? —w+1)
N2(w — 1)2w?

R(w) =

Remark.
We have written the equation in terms of the values of sfN at A, B
to show how to write the equation corresponding to a different

¥+ b
uniformizing parameter %, ad — bc # 0, for the curve C.
cst™ +d
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Solving the Schwarzian equation

Since sfV(A) = 0, around the point A = 0 the solutions of the
differential equation will be of the shape

sfN(z) = anz" + apnz®N + asn 2PN + agnz*N + 0(2°M).

1—N2
N2

N

If g(z) := z", we have D,(q,z) = g~2 and we must solve the

system produced by

1— N2 _o 4(—]. + Nz)ag/\/ 1

D.(f(q(2)),2) = Nvaq N2,
6((2 — 4/\/2)3%,\, + (—1 + 3N2)a/\/a3/\/)
+ N2a%
N
N 4(8(—1+4N?)a3, + 9(1 — 5N?)ayanasy + 2(—1 + 7TN?)a% asn) :
N2a3,

+ 0(¢°) = —R(f(q)).
(1)



The general solution

We obtain in this way a parametric family of solutions
f(z) = f(z; an) whose coefficients are

ain

asn

asy

aan

asN

agN

aN

(1+11N2)a3

= 22(—1+2N)(1+2N)

3(1+N2)a},

T 2%(=1+2N)(1+2N)

(—13—138N2+1593N*+718N6)a5,
28(—1+2N)?(1+2N)2(—1+4N)(1+4N)

15(—5+42N?4-87N*+20N%) a5,

= T 29(—1+2N)2(1+2N)2(—1+4N)(1+4N)



Taylor expansion of sf"

By taking into account the initial condition sf"V(B) = 1, we shall
obtain a particular value Ay of the parameter ap for which

A2 (1+11N2)A3
fN “N) = )\ N _ 'N _2N N 3N o) 4N .
S N) =zt = 2 e o oy T o)

Now we extract the N*'-root of f(z; ay) to deduce a series
expansion g(z; b1) around point A such that

g(z; b))V = f(z; an) Z a2V, (2)

Jj=1



Taylor expansion of sf

We write

g(zib1) =) b1z,
k>0

and deduce by substitution in equality (2) a linear system of
equations for the coefficients b-s. When we solve it, we obtain

g(z;b1) =

bY N4l (FIHBN)2+N) (14N BV o 3N+1
biz — 352"+ a2 0N,
(3)

where b{v = ap.

For a particular value up of the parameter by, we shall have

st(z; N) = g(z: pn), A = piy-



Taylor expansion of cf

By performing analogous computations, we find the Taylor series
around the point A of the function cf(z; N). Thus,

sf(z; N) =

iz — (vt 4 CLE3MEHN)LLN)

2N+1 3N+1
2N 24N2(1 4 2N)(—1 + 2N) (unz)™ 7+ O((unz)™™ )

cf(z; N) =

Y1 s(2) = 1 () + 5 () + O((unz) ™)

Remark. We have determined both coordinate functions sf, cf up
to the local constant pp or the local parameter q(z) ‘= pnz.



Local constants

e The appearance of the local constant pupy is not surprising because,
up to now, we have not imposed the initial condition sf(B; N) = 1.

e Since the function sf(z) has a pole at the point C, the point B lies
on the boundary of the convergence disk of the series of the
function around zero. Hence, in order to obtain a good numerical
approximation of up, it is not advisable to compute many terms of
the series sf(z) and then impose sf(B) = 1.

e The indeterminacy of upy reflects the random choice of the radius r
of the disk D, that we have taken to build up the fundamental
domains for our curves.

e The indeterminacy of upy also reflects the random choice of the
conjugacy class of the Fuchsian group I = [A, A] used to
uniformize the curve Fy.



Determining the inverse functions arcsf and arc cf

The solutions of the differential equation

Ds(g(w), w) = R(w) (4)
are the inverse functions of the solutions of the differential equation
Da(f(2),z) = —R(f(2)) (5)

(Poincaré) The solutions of (4) are quotients of two linearly
independent solutions of the second order differential equation

o (w) + %R(W)u(w) ~o. (6)



Relation to the hypergeometric equations
The substitution v(w) = s(w)u(w) transforms the equation
(W) + R(w)u(w) = 0 (7)
into an equation of the type
v(w) + P(w)v'(w) + Q(w)v(w) = 0, (8)

where

$(w)? — s(w)s"(w)

s(w)?

By a suitable election of s(w), equation (8) turns out to be a
hypergeometric equation. In our case, we take

P(w) = —2% logs(w), Q(z)= %R(w)+2

s(w) = (w(w — 1)) = .



Relation to the hypergeometric functions

In this way we arrive at the hypergeometric equation

(N=3)(N-1)

e v(w) =0. (9)

W(W—1)v"(w)+%(2w—1)v’(w)+
The general solution, v(w), of equation (9) is

N-1N-3 N—1 N+1 N—1 N+1

AF(a W) W (S o ),
where
Fla, b, c;w) — r(b)rrt)—b)/o 11— 1) P11 — tw)dt
(10)
_ - (a)n(b)n w"
72 (), nl

n=0

is the well known hypergeometric function.



The arc f(z; 1) computation

Proposition

Let us take ay = 1. The inverse function arc f(z;1) of f(z;1) is
the quotient of two hypergeometric functions:

Il
<
=

arc f(z; 1)(w)

Lous (iv DN 5N -2) 5 (qq)
6N2(2N + 1)(2N — 1)

I
<
2=
/?
+
=

(N + 1)(23N2 — 15N — 2)
96N3(2N — 1) 3+"')

The result provides an easy way of computing the series arc f(z; 1)
and offers an alternative approach to the computation of f(z;1).



Computing the local constant

From 1 = sfN(B; N) = f(B; A\n) = f(unB; 1), we obtain

F(N+l N—1 N+1;1)

unB = arcf(z;1)(1) = 2N 2 2N * N
F(Aé/\/17 I\£N3’ N/\/l? 1)
Since F(o)r( b)
c)fi(c—a—
F(a b,c;1) = ,
(2,b,¢:1) [(c — a)l(c — b)
we obtain

G RUCT
T ISR

N 2N

Since the right-hand-side term is real and

B = ryy/2cos(m/N) — 1, we deduce that uy € R and

-1
I’NO(MN .



Choosing the point B

For each value of N there exists a special value of B which is the
most natural one to parametrize Fy.

B = 7y := length of the one-dimensional simplex contained in
Fn(R) joining the points (0, 1) and (1, 0):

_ /0 1+ D(ei(s), )2 d(sf)




Determining the radius ry and the local parameter g

Combining all these results, we obtain:

(sf(A),cf(A)) = (sf(0),cf(0)) = (0,1)

(sf(B),cf(B)) = (sf(mn), cf(mn)) = (1,0)

TN

e /2cos(m/N)—1

1 rCEhHrCREY

N = —— 5 N—I\r(Ni3)
HN = oy T2

q(z) = pnz, local parameter
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N TN ’N BN

4 | 1.75442 | 2.72598 | 0.917155
5 | 1.79861 | 2.28787 | 0.835412
6 | 1.82943 | 2.13819 | 0.779984
7 | 1.85211 | 2.06822 | 0.740087
8 | 1.86949 | 2.03043 | 0.710054
9 1.88323 2.00823 0.686653
10 | 1.89435 | 1.99448 | 0.667917
11 | 1.90354 | 1.98568 | 0.652585
12 1.91127 1.97992 0.639808
13 1.91785 1.97613 0.629000
14 | 1.92352 | 1.97364 | 0.619738
15 | 1.92846 | 1.97203 | 0.611715
16 | 1.9328 | 1.97104 | 0.604697
17 | 1.93665 | 1.97049 | 0.598507
18 | 1.94007 | 1.97024 | 0.593007
10 | 1.94315 | 1.97021 | 0.588088
20 | 1.94593 | 1.97034 | 0.583662

Table 1. Values of 7y, ry, iy




n sf(z; 4) n cf(z; 4)
1 1 0 1
15 6
5 -2 4 _2
5! 41
7425 1260
9 —_— 8 —_—
9! 8!
18822375 2316600
13 R — 12 -
13! 12!
159120014625 15081066000
17 E— 16 EEpm—
17! 16!
o1 3416758559589375 20 261570317580000
21! 20!
5 154667733894382190625 ” 9957261810295800000
25! 241
2 13152597869424682778484375 28 729754600219383538800000
29! 28!

Table 2. Taylor coefficients of sf(z; 4), cf(z;4) at 0, (g = 3)




n sf(z; 37) n f(z; 37)
1 1 0 1
1 1
38 — 75 37 -3
2717 1
75 1998740 7 2738
13001 10739
112 ~ 47906760 1 ~ 73953380
744607343 21113
149 166669707434672 148 5473550120
186 61950482023 185 43045156471
154169562627071600 77084781313535800
3 563138467716575 22 279990543017
14857579755236103572288 11408547634403208400
260 __ 5081316514506887 259 _ __ 2158310701054223
2454153798855963536494000 858053820590587237772900
297 21158496012821252478247 206 682866283188190333
183069439357079876806094111558400 5085006671229556447615568000
334 _ 111875005818620841368622437 333 | — 60878893202148248604739021
T0142235191755813608360585370214592000 5071T17595877906804184792685107206000
37 16215411705200449514944498325753 370 709318651262436684839310947

19842515723540739801545393811531836343872000

938156755237412758774186646744849760000

Table 3. Reduced Taylor coefficients of sf(z; 37), cf(z; 37) at 0, (g = 630)
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