COMPLEX UNIFORMIZATION OF FERMAT CURVES

Pilar Bayer University of Barcelona

BMS Student Conference Berlin Mathematical School, 2018-02-22 based on joint work with Jordi Guàrdia

References

- 1. Bayer, P.; Guàrdia, J.: Hyperbolic uniformization of Fermat curves. *Ramanujan J.* 12 (2006), no. 2, 207–223.
- Bayer, P.: Uniformization of certain Shimura curves. *Differential Galois theory* (Bedlewo, 2001), 13–26, Banach Center Publ., 58, Polish Acad. Sci. Inst. Math., Warsaw, 2002.
- 3. Guàrdia, J.: A fundamental domain for the Fermat curves and their quotients. Contributions to the algorithmic study of problems of arithmetic moduli. *Rev. R. Acad. Cienc. Exactas Fís. Nat.* 94 (2000), no. 3, 391–396.

1 Curves and Riemann surfaces

2 Fermat curves

3 The Fermat sinus and cosinus functions: (sf, cf)

4 Fermat tables

1 Curves and Riemann surfaces

2 Fermat curves

3 The Fermat sinus and cosinus functions: (sf, cf)

4 Fermat tables

Theorem

Any connected compact surface is homeomorphic to:

- 1. The sphere $(abb^{-1}a^{-1})$.
- 2. The connected sum of g tori $(aba^{-1}b^{-1})$, for $g \ge 1$.
- 3. The connected sum of k real projective planes (abab), for $k \ge 1$.

$$P \# P = K = abab^{-1}$$

Compact connected orientable surfaces

Image source: Henry Segerman

Compact connected orientable surfaces are classified by their genus g.

g = 1. Weierstrass's elliptic functions

$$\begin{split} &\Lambda = \{m\omega_1 + n\omega_2 : m, n \in \mathbb{Z}\} \subseteq \mathbb{C}, \quad \tau = \omega_2/\omega_1, \quad \Im(\tau) > 0 \\ &\wp(z;\omega_1,\omega_2) = \frac{1}{z^2} + \sum_{n^2 + m^2 \neq 0} \left\{ \frac{1}{(z+m\omega_1 + n\omega_2)^2} - \frac{1}{(m\omega_1 + n\omega_2)^2} \right\} \\ &E_{\Lambda} : \wp'^2(z) = 4\wp^3(z) - g_2\wp(z) - g_3, \quad g_2(\omega_1,\omega_2), g_3(\omega_1,\omega_2) \in \mathbb{C} \\ &\mathbb{C}/\Lambda \simeq E_{\Lambda}(\mathbb{C}), \quad z \mapsto (\wp(z), \wp'(z)) \end{split}$$

 $Y^2 = 4X^3 - g_2X - g_3, \quad \Delta = g_2^2 - 27g_3^2 \neq 0$

 $\mathbb{P}^1(\mathbb{C}) = \mathbb{C} \cup \{\infty\}$, complex projective line, Riemann sphere

$$lpha = egin{bmatrix} \mathbf{a} & b \\ \mathbf{c} & d \end{bmatrix} \in \mathsf{SL}(2,\mathbb{C}), \ lpha(\mathbf{z}) = rac{\mathbf{a}\mathbf{z} + \mathbf{b}}{\mathbf{c}\mathbf{z} + \mathbf{d}},$$
 Möbius transformations

 $\text{PSL}(2,\mathbb{C})=\text{SL}(2,\mathbb{C})/\{\pm I_2\}$, conformal transformations of $\mathbb{P}^1(\mathbb{C})$

A model for the hyperbolic plane:

$$\mathcal{H} = \{z = x + iy \in \mathbb{C} : y > 0\}$$
$$\mu = \frac{dx^2 + dy^2}{y^2}, \quad d(z_1, z_2) = \left| \arccos\left(1 + \frac{|z_1 - z_2|^2}{2z_1 z_2}\right) \right|$$
$$\mathsf{PSL}(2, \mathbb{R}) = \mathsf{SL}(2, \mathbb{R}) / \{\pm \mathrm{I}_2\}, \qquad \text{hyperbolic motions of } \mathcal{H}$$

The Poincaré disk model for the hyperbolic plane

$$\mathcal{D}_r = \{z \in \mathbb{C} : z\overline{z} < r^2\}, \quad r \in \mathbb{R}, \ r > 0$$

 $\operatorname{Aut}(\mathcal{D}_r) \simeq \left\{ \begin{bmatrix} a & br \\ \overline{b}/r & \overline{a} \end{bmatrix} : a, b \in \mathbb{C}, \ |b| < |a| \right\} / \mathbb{R}^*.$

$$\mathcal{H} \simeq \mathcal{D}_r, \quad z = x + iy \mapsto z = r\left(\frac{2x}{x^2 + (1+y)^2}, \frac{x^2 + y^2 - 1}{x^2 + (1+y)^2}\right)$$

Types of conformal isometries of \mathcal{H}

$$\alpha = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL(2, \mathbb{R}), \quad \alpha \neq \pm I_2. \text{ Fixed points:}$$
$$\alpha(z) = z \Leftrightarrow z = \frac{a - d \pm \sqrt{(a + d)^2 - 4}}{2c}$$

 $\begin{array}{ll} \text{hyperbolic:} & |\mathrm{tr}(\alpha)| > 2, \quad \mathbb{P}^1(\mathbb{C})^\alpha = \{z_1, z_2\}, \quad z_1, z_2 \in \mathbb{P}^1(\mathbb{R}) \\ \text{elliptic:} & |\mathrm{tr}(\alpha)| < 2, \quad \mathbb{P}^1(\mathbb{C})^\alpha = \{z, \overline{z}\}, \quad z \in \mathcal{H}, \quad \text{elliptic} \\ \text{parabolic:} & \mathrm{tr}(\alpha) = \pm 2, \quad \mathbb{P}^1(\mathbb{C})^\alpha = \{z\}, \quad z \in \mathbb{P}^1(\mathbb{R}), \text{cusp} \end{array}$

Conjugacy classes in $SL(2, \mathbb{R})$:

$$\begin{bmatrix} \lambda \\ & \lambda^{-1} \end{bmatrix}, \lambda \neq 1; \quad \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}, \theta \in \mathbb{R} \setminus 2\pi\mathbb{Z}; \quad \begin{bmatrix} \pm 1 & h \\ 0 & \pm 1 \end{bmatrix}$$

Fuchsian groups and Riemann surfaces

 $\Gamma \subseteq SL(2,\mathbb{R})$ discrete subgroup, $\overline{\Gamma} \subseteq PSL(2,\mathbb{R})$

 $\mathrm{P}_{\Gamma} \text{ set of cusps}, \quad \mathcal{H}^* = \mathcal{H} \cup \mathrm{P}_{\Gamma}, \quad \pi: \ \mathcal{H}^* \to \Gamma \backslash \mathcal{H}^*$

 $\Gamma \setminus \mathcal{H}^* \simeq X(\Gamma)(\mathbb{C})$ compact Riemann surface

$$\sharp \overline{\Gamma}_z = \begin{cases} \infty & \text{if } z \text{ is a cusp} \\ e_{\pi(z)} > 1 & \text{if } z \text{ is elliptic} \\ 1 & \text{otherwise} \end{cases}$$

 $\Gamma' \subseteq \Gamma, \ [\overline{\Gamma}:\overline{\Gamma}'] = n, \ \varphi: \ X(\Gamma') \to X(\Gamma), \ e_{w,\varphi} = [\overline{\Gamma}_{\varphi(w)}:\overline{\Gamma}'_w]$ Hurwitz formula: $2g' - 2 = n(2g - 2) + \sum_{w \in X(\Gamma')} (e_{w,\varphi} - 1)$

Laszlo Fuchs obtained his PhD in 1858 under Ernst Kummer in Berlin.

Fundamental domains

fundamental domain for the modular group

Hyperbolic tesselations by $SL(2,\mathbb{Z})$

F-Automorphic forms

$$\begin{split} \alpha &= \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathbf{GL}^+(2,\mathbb{R}), \quad k \in \mathbb{Z}, \quad j(\alpha, z) := cz + d \\ f : \ \mathcal{H} \to \mathbb{P}^1, \quad (f|_k \alpha)(z) = \det(\alpha)^{k/2} j(\alpha, z)^{-k} f(\alpha z), \quad z \in \mathcal{H} \end{split}$$

Definition

A meromorphic function f(z) on \mathcal{H} is called a Γ -automorphic form of weight k if it is meromorphic at all cusps and satisfies $f|_k \gamma = f$, for all $\gamma \in \Gamma$.

 $\mathcal{A}_{2m}(\Gamma) \simeq \Omega^m(X(\Gamma)), \quad f \mapsto \omega_f, \quad f(z)(dz)^m = \omega_f \circ \pi$

 $\mathcal{A}_0(\Gamma) = \mathbb{C}(X(\Gamma))$ field of Γ -automorphic functions

g = 0. Klein's *j* invariant

Theorem

- (a) The derivative f' of an automorphic function f is an automorphic form of weight 2.
- (b) If f is an automorphic form of weight k, then

$$kff'' - (k+1)(f')^2$$

is an automorphic form of weight 2k + 4.

Definition

The Schwarzian derivative with respect to z, $\{w, z\}$, of a non-constant smooth function w(z) is defined by

$$\{w, z\} = \frac{2w'w''' - 3(w'')^2}{4(w')^2}, \quad w' = \frac{dw}{dz}.$$

Hermann Schwarz obtained his PhD in 1864 under Kummer and Weierstrass in Berlin.

Definition

The Γ -automorphic derivative $\{w, z\}_{\Gamma}$ of a non-constant smooth function w(z) with respect to z is defined by

$$\{w,z\}_{\Gamma}:=\frac{\{w,z\}}{w'^2}, \quad w'=\frac{dw}{dz}.$$

Proposition

If w(z) is a Γ -automorphic function on \mathcal{H} , so is

$$\{w, z\}_{\Gamma} = \frac{2w'w''' - 3(w'')^2}{4(w')^4} = -\{z, w\}.$$

That is: $\{w, \gamma(z)\}_{\Gamma} = \{w, z\}_{\Gamma}$, for all $\gamma \in \Gamma$.

Theorem (Poincaré)

Let Γ be a Fuchsian group of the first kind, $w(z) \in \mathcal{A}_0(\Gamma)$ a non-constant automorphic function and $\zeta(w)$ be its inverse function. Then

$$\zeta(w)=\frac{\eta_1(w)}{\eta_2(w)},$$

where $\{\eta_1,\eta_2\}$ is a fundamental system of solutions of the ordinary differential equation

$$\frac{d^2\eta}{dw^2} = \{w, z\}_{\Gamma} \eta.$$

Moreover, $\{w, z\}_{\Gamma}$ is an algebraic function of w.

If $X(\Gamma)$ is of genus g = 0, then $\mathbb{C}(X(\Gamma)) = \mathbb{C}(w)$ where w(z) is a Hauptmodul for $X(\Gamma)$.

Thus there is a rational function $R(w) \in \mathbb{C}(w)$ such that w(z) is a solution of the third order differential equation

$$\{w,z\}_{\Gamma}=R(w).$$

We can obtain $\zeta(w)$ by integrating the linear differential equation

$$\frac{d^2\eta}{dw^2}=R(w)\eta.$$

Remark

A key point is always the computation of R(w).

How to obtain the Hauptmodul j?

Dedekind's *valence* function (1877)

$$[v, z] = \frac{-4}{\sqrt{\frac{dv}{dz}}} \frac{d^2}{dv^2} \sqrt{\frac{dv}{dz}} = 4\{z, v\}_{\mathsf{SL}(2,\mathbb{Z})}$$
$$v(i) = 1, \quad v(e^{\frac{2\pi i}{3}}) = 0, \quad v(\infty) = \infty$$
$$\frac{1}{(1-v)^{1/2}} \frac{dv}{dz}, \quad \frac{1}{v^{2/3}} \frac{dv}{dz}, \quad \frac{1}{v} \frac{dv}{dz}$$

Fuchs' theory

$$R(v) = \frac{3}{4(1-v)^2} + \frac{8}{9v^2} + \frac{23}{36(1-v)} + \frac{23b}{36v}$$
$$= \frac{36v^2 - 41v + 32}{36v^2(1-v)^2}$$
$$[v, z] = R(v), \quad \frac{d^2\eta}{dv^2} = -\frac{1}{4}R(v)\eta, \quad z(v) = \frac{\eta_1(v)}{\eta_2(v)}$$

Dedekind's valence function versus Klein's j invariant

The function

$$z(v):=\operatorname{const.} v^{-rac{1}{3}}(1-v)^{-rac{1}{4}}\left(rac{dv}{dz}
ight)^{rac{1}{2}}$$

satisfies the hypergeometric differential equation

$$v(1-v)\frac{d^2z}{dv^2} + \left(\frac{2}{3} - \frac{7v}{6}\right)\frac{dz}{dv} - \frac{z}{144} = 0$$

whose solutions are $c_1\eta_1(v) + c_2\eta_2(v)$, where

 $\eta_1(v) = F(1/12, 1/12, 2/3; v), \quad \eta_2(v) = F(1/12, 1/12, 1/2; 1-v)$

$$1728 v(z) = j(z)$$

Hypergeometric differential equation

$$z(1-z)rac{d^2w}{dz^2} + [c-(a+b+1)z]rac{dw}{dz} - ab\,w = 0$$

It has regular singular points at 0, 1, and infinity.

Its solutions are obtained in terms of the hypergeometric series

$$F(a, b, c; z) = \sum_{n=0}^{\infty} \frac{(a)_n (b)_n}{(c)_n} \frac{z^n}{n!}, \ |z| < 1, \ (Wallis, 1655)$$

where

$$(q)_n = \begin{cases} 1, & n = 0 \\ q(q+1)\cdots(q+n-1), & n > 0 \end{cases}$$

denotes de Pochhammer symbol.

Leo Pochhammer obtained his PhD in 1863 under Kummer in Berlin.

1 Curves and Riemann surfaces

2 Fermat curves

3 The Fermat sinus and cosinus functions: (sf, cf)

4 Fermat tables

The Fermat curves F_N

 $N \ge 4$ a positive integer

 $egin{aligned} F_N : & X^N + Y^N = Z^N \ \deg(F_N) = N, & g(N) = (N-1)(N-2)/2 \ \mathcal{D}_r = \{z \in \mathbb{C} : z\overline{z} < r^2\} \end{aligned}$

 Δ a Fuchsian triangle group of signature (N, N, N) acting on \mathcal{D}_r :

$$\Delta = \langle \alpha, \beta, \gamma : \alpha^{\mathsf{N}} = \beta^{\mathsf{N}} = \gamma^{\mathsf{N}} = \mathrm{Id}, \ \alpha \beta \gamma = \mathrm{Id} \rangle$$

Theorem

A hyperbolic model for the Fermat curve F_N is given through an isomorphism

$$\Gamma \setminus \mathcal{D}_r^* \simeq F_N(\mathbb{C}),$$

where $\Gamma = [\Delta, \Delta]$ denotes the commutator subgroup of $\Delta.$

First idea of the proof

$$g(\mathcal{C}) = g(\mathcal{C}_A) = g(\mathcal{C}_B) = 0$$

We aim an explicit determination of affine coordinate functions sf(z; N), cf(z; N), meromorphic on \mathcal{D}_r^* and Γ -automorphic, realizing the isomorphism

$$\Gamma \setminus \mathcal{D}_r^* \simeq F_N(\mathbb{C}).$$

Thus, we shall have

$$\mathrm{sf}^{N}(z;N)+\mathrm{cf}^{N}(z;N)=1, \hspace{1em} ext{for all } z\in \Gammaackslash \mathcal{D}_{r}^{*}, \hspace{1em} z\notin \mathcal{S},$$

for a certain finite subset S of $\Gamma \setminus \mathcal{D}_r^*$.

When it is not necessary to state the value of N explicitly, the *Fermat functions* sf(z; N), cf(z; N) will be written sf(z), cf(z).

Proposition

The group $\operatorname{Aut}(\mathcal{D}_r)$ consists of the following homographic transformations

$$f(z) = r^2 e^{i\alpha} rac{z+z_0}{\overline{z}_0 z + r^2}, \quad z \in \mathcal{D}_r,$$

for $\alpha \in \mathbb{R}$ and $|z_0| < r$.

The group $Aut(\mathcal{D}_r)$ also admits the equivalent description

$$\operatorname{Aut}(\mathcal{D}_r)\simeq \left\{ egin{bmatrix} \mathsf{a} & br\ \overline{b}/r & \overline{\mathsf{a}} \end{bmatrix}: \mathsf{a}, b\in\mathbb{C}, \ |b|<|\mathsf{a}|
ight\}/\mathbb{R}^*.$$

All groups $\operatorname{Aut}(\mathcal{D}_r)$ are conjugate in $\operatorname{PGL}(2, \mathbb{C})$. By considering the homothety $h_r(z) = rz$, we have

$$\operatorname{Aut}(\mathcal{D}_r) = h_r \operatorname{Aut}(\mathcal{D}_1) h_r^{-1}.$$

The triangle group Δ

 $\mathcal{T}_{N}=(A,B,C),\ \mathcal{T}_{N}^{\prime}=(A,B,C^{\prime}),\ \text{interior angles}\ (\pi/N,\pi/N,\pi/N)$

 α , β , γ rotations with center A, B, C and angle $2\pi/N$

$$\Delta = \langle \alpha, \beta, \gamma : \alpha^{\mathsf{N}} = \beta^{\mathsf{N}} = \gamma^{\mathsf{N}} = \mathrm{Id}, \ \alpha \beta \gamma = \mathrm{Id} \rangle$$

Proposition

The quadrilateral Q = AC'BC is a fundamental domain for the action of Δ in D_r .

The quotient $\mathcal{C}=\Delta \backslash \mathcal{D}_r$ is a compact and connected Riemann surface of genus zero.

An involution

Proposition Let $\zeta_N = e^{2\pi i/N}$ and $t = \sqrt{2\cos(\pi/N) - 1}$. (i) The vertices of the triangles $\mathcal{T}_N, \mathcal{T}'_N$ are $A = 0, \quad B = rt, \quad C = \zeta_{2N}B, \quad C' = \overline{\zeta}_{2N}B.$ (ii) The involution $\tau(z) = \frac{rz - rB}{(B/r)z - r}$ defined by the matrix $M(\tau) = \begin{vmatrix} ir & -iBr \\ iB/r & -ir \end{vmatrix}$

is an element of $Aut(\mathcal{D}_r)$ which interchanges the points A and B, and the points C and C'.

Coverings of degree *N* of $C = \Delta \setminus D_r$

$$arphi_{\mathcal{A}}: \Delta \longrightarrow \mathbb{Z}/N\mathbb{Z}, \quad \alpha \mapsto 1, \quad \beta \mapsto 0$$

 $\Delta_{\mathcal{A}} = \ker(\varphi_{\mathcal{A}})$, subgroup generated by β and $[\Delta, \Delta]$

Proposition

- (a) The hyperbolic regular polygon $\mathcal{P}_A = \bigcup_{i=0}^{N-1} \mathcal{Q}_i$, $\mathcal{Q}_i = \alpha^i(\mathcal{Q})$, is a fundamental domain for the action of Δ_A .
- (b) The Riemann surface $C_A = \Delta_A \setminus D_r$ is a covering of degree N of C of genus zero.
- (c) $\operatorname{Aut}(\mathcal{C}_{\mathcal{A}} \mid \mathcal{C}) \simeq \Delta / \Delta_{\mathcal{A}} = \langle \overline{\alpha} \rangle$, a cyclic group of order N.

Function fields for C_A , C_B

(d) There exists a Δ_A -automorphic function $\mathrm{sf}(z) = \mathrm{sf}(z; N)$, defined on \mathcal{D}_r , establishing an analytic isomorphism

$$\mathrm{sf}:\mathcal{C}_{A}=\Delta_{A}\backslash\mathcal{D}_{r}\longrightarrow\mathbb{P}^{1}(\mathbb{C})$$

and such that sf(A; N) = 0, sf(B; N) = 1, $sf(C; N) = \infty$. The function field $\mathbb{C}(\mathcal{C}_A)$ is isomorphic to $\mathbb{C}(sf)$.

(e) There exists a Δ_B -automorphic function cf(z) = cf(z; N), defined on \mathcal{D}_r , establishing an analytic isomorphism between

$$\mathrm{cf}:\mathcal{C}_B=\Delta_B\backslash\mathcal{D}_r\longrightarrow\mathbb{P}^1(\mathbb{C})$$

and such that cf(A; N) = 1, cf(B; N) = 0, $cf(C; N) = \infty$. The function field $\mathbb{C}(\mathcal{C}_B)$ is isomorphic to $\mathbb{C}(cf)$.

Proposition

Let τ be the involution which interchanges the points A and B, and the points C and C'. Then

A fundamental domain for $[\Delta, \Delta]$

$$arphi : \Delta \longrightarrow \mathbb{Z}/N\mathbb{Z} \times \mathbb{Z}/N\mathbb{Z}, \quad \alpha \mapsto (1,0), \quad \beta \mapsto (0,1)$$

 $\ker(\varphi) = [\Delta, \Delta] =: \Gamma_N$

Proposition

Let C_N := Γ_N\D_r and H_N = Δ/Γ_N = Aut(C_N | C). Then
(a) The elements {β^j_iαⁱ}^{N-1}_{i,j=0} represent the classes in H_N.
(b) Let Q_{i,j} := β^j_iαⁱ(Q) = β^j_i(Q_i) = αⁱ(Q^j), then the polygon P_N = ∪^{N-1}_{i=0}Q_{i,j} is a fundamental domain for Γ_N.

The function field of the Fermat curve

Proposition

We have that $\mathcal{C}_N \simeq \mathcal{F}_N(\mathbb{C})$ as Riemann surfaces. Thus,

$$\mathbb{C}(F_N) = \mathbb{C}(\mathrm{sf}, \mathrm{cf}).$$

The functions (sf, cf) parametrize the Fermat curve F_N and are Γ_N -automorphic.

Computing the Schwarzian differential equation

$$w = f(z)$$

$$D_{s}(f(z),z) := \frac{2f'(z)f'''(z) - 3f''(z)^{2}}{f'(z)^{2}}$$

$$D_a(f(z),z) := rac{D_s(f(z),z)}{f'(z)^2} = -D_s(f^{-1}(w),w)$$

Proposition

The isotropy groups of the points A, B, C under the action of Δ are $\langle \alpha \rangle, \langle \beta \rangle, \langle \gamma \rangle$, respectively. All of them are cyclic groups of order N.

$$\mathbb{C}(\mathcal{C}) = \mathbb{C}(\mathrm{sf}^N) = \mathbb{C}(\mathrm{cf}^N)$$

Computing the Schwarzian differential equation

Proposition

The function $sf^{N}(z; N)$ is a solution of the differential equation

$$D_a(f(z),z) = -R(f(z)),$$

where

$$R(w) = \frac{1 - 1/N^2}{(w - w_A)^2} + \frac{1 - 1/N^2}{(w - w_B)^2} + \frac{m_A}{w - w_A} + \frac{m_B}{w - w_B};$$

and

$$w_A = \operatorname{sf}^N(A) = 0$$
, $\operatorname{sf}^N(B) = w_B = 1$, $w_C = \operatorname{sf}^N(C) = \infty$, m_A, m_B are two constants determined by the local conditions at the point C , where sf^N takes the value ∞ :

$$\left. \begin{array}{l} m_A + m_B = 0 \\ m_A w_A + m_B w_B + 1 - 1/N^2 = 0 \end{array} \right\} \, . \label{eq:magnation}$$

Computing the Schwarzian differential equation

Thus, $m_A = -m_B = 1 - N^{-2}$ and

$$R(w) = \frac{(N-1)(N+1)(w^2 - w + 1)}{N^2(w-1)^2w^2}.$$

Remark.

We have written the equation in terms of the values of sf^N at A, B to show how to write the equation corresponding to a different uniformizing parameter $\frac{a \mathrm{sf}^N + b}{c \mathrm{sf}^N + d}$, $ad - bc \neq 0$, for the curve C.

1 Curves and Riemann surfaces

2 Fermat curves

3 The Fermat sinus and cosinus functions: (sf, cf)

4 Fermat tables

Solving the Schwarzian equation

Since $sf^{N}(A) = 0$, around the point A = 0 the solutions of the differential equation will be of the shape

$$sf^{N}(z) = a_{N}z^{N} + a_{2N}z^{2N} + a_{3N}z^{3N} + a_{4N}z^{4N} + O(z^{5N}).$$

If $q(z) := z^N$, we have $D_a(q,z) = \frac{1-N^2}{N^2}q^{-2}$ and we must solve the system produced by

$$\begin{split} D_a(f(q(z)),z) &= \frac{1-N^2}{N^2 a_N^2} q^{-2} + \frac{4(-1+N^2)a_{2N}}{N^2 a_N^3} q^{-1} \\ &+ \frac{6((2-4N^2)a_{2N}^2 + (-1+3N^2)a_N a_{3N})}{N^2 a_N^4} \\ &+ \frac{4(8(-1+4N^2)a_{2N}^3 + 9(1-5N^2)a_N a_{2N} a_{3N} + 2(-1+7N^2)a_N^2 a_{4N})}{N^2 a_N^5} q \\ &+ O(q^2) &= -R(f(q)). \end{split}$$

(1)

The general solution

We obtain in this way a parametric family of solutions $f(z) = f(z; a_N)$ whose coefficients are

$$a_{1N} = a_N$$

•

$$a_{2N} = -\frac{a_N^2}{2},$$

$$a_{3N} = \frac{(1+11N^2)a_N^3}{2^4(-1+2N)(1+2N)}$$

$$a_{4N} = -\frac{3(1+N^2)a_N^4}{2^4(-1+2N)(1+2N)}$$

$$a_{5N} = \frac{(-13 - 138N^2 + 1593N^4 + 718N^6)a_N^5}{2^8(-1 + 2N)^2(1 + 2N)^2(-1 + 4N)(1 + 4N)}$$

$$a_{6N} = -\frac{15(-5+42N^2+87N^4+20N^6)a_N^6}{2^9(-1+2N)^2(1+2N)^2(-1+4N)(1+4N)}$$

By taking into account the initial condition $\mathrm{sf}^N(B) = 1$, we shall obtain a particular value λ_N of the parameter a_N for which

$$\mathrm{sf}^{N}(z;N) = \lambda_{N} z^{N} - rac{\lambda_{N}^{2}}{2} z^{2N} + rac{(1+11N^{2})\lambda_{N}^{3}}{2^{4}(-1+2N)(1+2N)} z^{3N} + O(z^{4N}).$$

Now we extract the N^{th} -root of $f(z; a_N)$ to deduce a series expansion $g(z; b_1)$ around point A such that

$$g(z; b_1)^N = f(z; a_N) = \sum_{j \ge 1} a_{jN} z^{jN}.$$
 (2)

Taylor expansion of sf

We write

$$g(z; b_1) = \sum_{k\geq 0} b_{kN+1} z^{kN+1},$$

and deduce by substitution in equality (2) a linear system of equations for the coefficients b-s. When we solve it, we obtain

$$\begin{split} g(z;b_1) &= \\ b_1 z - \frac{b_1^{N+1}}{2N} z^{N+1} + \frac{(-1+3N)(2+N)(1+N)b_1^{2N+1}}{2^4N^2(1+2N)(-1+2N)} z^{2N+1} + O(z^{3N+1}), \end{split}$$

$$\end{split} \tag{3}$$
where $b_1^N = a_N.$

For a particular value μ_N of the parameter b_1 , we shall have

$$\operatorname{sf}(z; N) = g(z; \mu_N), \quad \lambda_N = \mu_N^N.$$

By performing analogous computations, we find the Taylor series around the point A of the function cf(z; N). Thus,

$$\begin{aligned} \operatorname{sf}(z;N) &= \\ \mu_N z - \frac{1}{2N} (\mu_N z)^{N+1} + \frac{(-1+3N)(2+N)(1+N)}{2^4 N^2 (1+2N)(-1+2N)} (\mu_N z)^{2N+1} + O((\mu_N z)^{3N+1}) \\ \operatorname{cf}(z;N) &= \\ \sqrt[N]{1-\operatorname{sf}^N(z)} &= 1 - (\mu_N z)^N + \frac{1}{2N^2} (\mu_N z)^{2N} + O((\mu_N z)^{3N}) \end{aligned}$$

Remark. We have determined both coordinate functions sf, cf up to the *local constant* μ_N or the *local parameter* $q(z) := \mu_N z$.

Local constants

- The appearance of the local constant μ_N is not surprising because, up to now, we have not imposed the initial condition sf(B; N) = 1.
- Since the function sf(z) has a pole at the point C, the point B lies on the boundary of the convergence disk of the series of the function around zero. Hence, in order to obtain a good numerical approximation of μ_N, it is not advisable to compute many terms of the series sf(z) and then impose sf(B) = 1.
- The indeterminacy of μ_N reflects the random choice of the radius r of the disk D_r that we have taken to build up the fundamental domains for our curves.
- The indeterminacy of μ_N also reflects the random choice of the conjugacy class of the Fuchsian group Γ = [Δ, Δ] used to uniformize the curve F_N.

The solutions of the differential equation

$$D_s(g(w), w) = R(w) \tag{4}$$

are the inverse functions of the solutions of the differential equation

$$D_a(f(z), z) = -R(f(z))$$
(5)

(Poincaré) The solutions of (4) are quotients of two linearly independent solutions of the second order differential equation

$$u''(w) + \frac{1}{4}R(w)u(w) = 0.$$
 (6)

Relation to the hypergeometric equations

The substitution v(w) = s(w)u(w) transforms the equation

$$u''(w) + \frac{1}{4}R(w)u(w) = 0$$
⁽⁷⁾

into an equation of the type

$$v''(w) + P(w)v'(w) + Q(w)v(w) = 0,$$
 (8)

where

$$P(w) = -2rac{d}{dw}\log s(w), \quad Q(z) = rac{1}{4}R(w) + rac{2s'(w)^2 - s(w)s''(w)}{s(w)^2}.$$

By a suitable election of s(w), equation (8) turns out to be a hypergeometric equation. In our case, we take

$$s(w) = (w(w-1))^{\frac{1-N}{2N}}.$$

Relation to the hypergeometric functions

In this way we arrive at the hypergeometric equation

$$w(w-1)v''(w) + \frac{N-1}{N}(2w-1)v'(w) + \frac{(N-3)(N-1)}{4N^2}v(w) = 0.$$
(9)

The general solution, v(w), of equation (9) is

$$c_1F(\frac{N-1}{2N}, \frac{N-3}{2N}, \frac{N-1}{N}; w) + c_2w^{\frac{1}{N}}F(\frac{N+1}{2N}, \frac{N-1}{2N}, \frac{N+1}{N}; w),$$

where

$$F(a, b, c; w) = \frac{\Gamma(c)}{\Gamma(b)\Gamma(c-b)} \int_0^1 t^{b-1} (1-t)^{c-b-1} (1-tw)^{-a} dt$$

$$= \sum_{n=0}^\infty \frac{(a)_n (b)_n}{(c)_n} \frac{w^n}{n!}$$
(10)

is the well known hypergeometric function.

Proposition

Let us take $a_N = 1$. The inverse function $\operatorname{arc} f(z; 1)$ of f(z; 1) is the quotient of two hypergeometric functions:

$$\operatorname{arc} f(z;1)(w) = w^{\frac{1}{N}} \frac{F(\frac{N+1}{2N}, \frac{N-1}{2N}, \frac{N+1}{N}; w)}{F(\frac{N-1}{2N}, \frac{N-3}{2N}, \frac{N-1}{N}; w)}$$
$$= w^{\frac{1}{N}} \left(1 + \frac{1}{2N} w + \frac{(N+1)(13N^2 - 5N - 2)}{16N^2(2N+1)(2N-1)} w^2 + \frac{(N+1)(23N^2 - 15N - 2)}{96N^3(2N-1)} w^3 + \dots \right).$$

(11)

The result provides an easy way of computing the series $\operatorname{arc} f(z; 1)$ and offers an alternative approach to the computation of f(z; 1).

Computing the local constant

From
$$1 = \mathrm{sf}^{N}(B; N) = f(B; \lambda_{N}) = f(\mu_{N}B; 1)$$
, we obtain

$$\mu_{N}B = \mathrm{arc}f(z; 1)(1) = \frac{F(\frac{N+1}{2N}, \frac{N-1}{2N}, \frac{N+1}{N}; 1)}{F(\frac{N-1}{2N}, \frac{N-3}{2N}, \frac{N-1}{N}; 1)}$$

Since

$$F(a, b, c; 1) = rac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)},$$

we obtain

$$\mu_N B = \frac{\Gamma(\frac{N+1}{N})\Gamma(\frac{N-1}{2N})}{\Gamma(\frac{N-1}{N})\Gamma(\frac{N+3}{2N})}.$$

Since the right-hand-side term is real and $B = r_N \sqrt{2} \cos(\pi/N) - 1$, we deduce that $\mu_N \in \mathbb{R}$ and $r_N \propto \mu_N^{-1}$.

Choosing the point B

For each value of N there exists a special value of B which is the most natural one to parametrize F_N .

 $B = \pi_N :=$ length of the one-dimensional simplex contained in $F_N(\mathbb{R})$ joining the points (0, 1) and (1, 0):

$$\pi_{N} := \int_{0}^{1} \sqrt{1 + D(\mathrm{cf}(\mathrm{sf}), \mathrm{sf})^{2}} d(\mathrm{sf})$$
$$= \int_{0}^{1} \sqrt{1 + \left(\frac{\mathrm{sf}}{\mathrm{cf}}\right)^{2N-2}} d(\mathrm{sf})$$

Combining all these results, we obtain:

$$(sf(A), cf(A)) = (sf(0), cf(0)) = (0, 1)$$

 $(sf(B), cf(B)) = (sf(\pi_N), cf(\pi_N)) = (1, 0)$

$$r_{N} = \frac{\pi_{N}}{\sqrt{2\cos(\pi/N) - 1}}$$

$$\mu_N = \frac{1}{\pi_N} \frac{\Gamma(\frac{N+1}{N})\Gamma(\frac{N-1}{2N})}{\Gamma(\frac{N-1}{N})\Gamma(\frac{N+3}{2N})}$$

 $q(z) = \mu_N z$, local parameter

1 Curves and Riemann surfaces

2 Fermat curves

3 The Fermat sinus and cosinus functions: (sf, cf)

4 Fermat tables

N	π_N	r _N	μ_N	
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	$\begin{array}{c} 1.75442\\ 1.79861\\ 1.82943\\ 1.85211\\ 1.86949\\ 1.88323\\ 1.89435\\ 1.90354\\ 1.91127\\ 1.91785\\ 1.92352\\ 1.92846\\ 1.9328\\ 1.93665\\ 1.94007 \end{array}$	2.72598 2.28787 2.13819 2.06822 2.03043 2.00823 1.99448 1.98568 1.97992 1.97613 1.97364 1.97203 1.97104 1.97049 1.97024	0.917155 0.835412 0.779984 0.740087 0.710054 0.686653 0.667917 0.652585 0.639808 0.629000 0.619738 0.611715 0.604697 0.598507 0.598507	
19 20	1.94315 1.94593	1.97021 1.97034	0.588088 0.583662	

Table 1. Values of π_N, r_N, μ_N

n	sf(z;4)	n	cf(z; 4)
1	1	0	1
5	$-\frac{15}{5!}$	4	$-\frac{6}{4!}$
9	7425 <u>9!</u>	8	1260 <u>8!</u>
13	$-\frac{18822375}{13!}$	12	$-\frac{2316600}{12!}$
17	159120014625 17!	16	$\frac{15081066000}{16!}$
21	$-rac{3416758559589375}{21!}$	20	$-\frac{261570317580000}{20!}$
25	154667733894382190625 25!	24	<u>9957261810295800000</u> 24!
29		28	- - 28 !

Table 2. Taylor coefficients of sf(z; 4), cf(z; 4) at 0, (g = 3)

n	sf(<i>z</i> ; 37)	n	cf(<i>z</i> ; 37)
1	1	0	1
38	$-\frac{1}{74}$	37	$-\frac{1}{37}$
75	<u>2717</u> 1998740	74	$\frac{1}{2738}$
112	$-\frac{13091}{147906760}$	111	$-\frac{10739}{73953380}$
149	<u>744697343</u> 166669797434672	148	21113 5472550120
186	$-\frac{61959482923}{154169562627071600}$	185	$-rac{43945156471}{77084781313535800}$
223	$\frac{563138467716575}{14857579755236103572288}$	222	$\frac{279990543017}{11408547634403298400}$
260	$- \frac{5081316514596887}{2454153798855963536494000}$	259	$-\frac{2158310701054223}{858953829599587237772900}$
297	$\frac{21158496912821252478247}{183969439357079876806994111558400}$	296	$\frac{682866283188190333}{5085006671229556447615568000}$
334	$-\frac{111875905818620841368622437}{10142235191755813608369585370214592000}$	333	$- \frac{69878893202148248694739021}{5071117595877906804184792685107296000}$
371	$\frac{16215411705290449514944498325753}{19842515723540739801545393811531836343872000}$	370	709318651262436684839319947 938156755237412758774186646744849760000

Table 3. Reduced Taylor coefficients of ${\rm sf}({\rm z};37),\,{\rm cf}(z;37)$ at 0, (g = 630)